SuperMark: Robust and Training-free Image Watermarking via Diffusion-based Super-Resolution
- URL: http://arxiv.org/abs/2412.10049v1
- Date: Fri, 13 Dec 2024 11:20:59 GMT
- Title: SuperMark: Robust and Training-free Image Watermarking via Diffusion-based Super-Resolution
- Authors: Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, Tianwei Zhang,
- Abstract summary: We propose SuperMark, a robust, training-free watermarking framework.
SuperMark embeds the watermark into initial Gaussian noise using existing techniques.
It then applies pre-trained Super-Resolution models to denoise the watermarked noise, producing the final watermarked image.
For extraction, the process is reversed: the watermarked image is inverted back to the initial watermarked noise via DDIM Inversion, from which the embedded watermark is extracted.
Experiments demonstrate that SuperMark achieves fidelity comparable to existing methods while significantly improving robustness.
- Score: 27.345134138673945
- License:
- Abstract: In today's digital landscape, the blending of AI-generated and authentic content has underscored the need for copyright protection and content authentication. Watermarking has become a vital tool to address these challenges, safeguarding both generated and real content. Effective watermarking methods must withstand various distortions and attacks. Current deep watermarking techniques often use an encoder-noise layer-decoder architecture and include distortions to enhance robustness. However, they struggle to balance robustness and fidelity and remain vulnerable to adaptive attacks, despite extensive training. To overcome these limitations, we propose SuperMark, a robust, training-free watermarking framework. Inspired by the parallels between watermark embedding/extraction in watermarking and the denoising/noising processes in diffusion models, SuperMark embeds the watermark into initial Gaussian noise using existing techniques. It then applies pre-trained Super-Resolution (SR) models to denoise the watermarked noise, producing the final watermarked image. For extraction, the process is reversed: the watermarked image is inverted back to the initial watermarked noise via DDIM Inversion, from which the embedded watermark is extracted. This flexible framework supports various noise injection methods and diffusion-based SR models, enabling enhanced customization. The robustness of the DDIM Inversion process against perturbations allows SuperMark to achieve strong resilience to distortions while maintaining high fidelity. Experiments demonstrate that SuperMark achieves fidelity comparable to existing methods while significantly improving robustness. Under standard distortions, it achieves an average watermark extraction accuracy of 99.46%, and 89.29% under adaptive attacks. Moreover, SuperMark shows strong transferability across datasets, SR models, embedding methods, and resolutions.
Related papers
- ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
Existing watermarking methods face the challenge of balancing robustness and concealment.
This paper introduces a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks.
Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering.
arXiv Detail & Related papers (2024-11-06T12:14:23Z) - Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances [13.746887960091112]
Large-scale text-to-image models can distort embedded watermarks during editing, posing challenges to copyright protection.
We introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods.
We propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques.
arXiv Detail & Related papers (2024-10-24T14:28:32Z) - Image Watermarks are Removable Using Controllable Regeneration from Clean Noise [26.09012436917272]
A critical attribute of watermark techniques is their robustness against various manipulations.
We introduce a watermark removal approach capable of effectively nullifying the state of the art watermarking techniques.
arXiv Detail & Related papers (2024-10-07T20:04:29Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARK is a first-of-its-kind watermarking technique that enhances robustness through contrastive learning.
Our evaluation reveals that JIGMARK significantly surpasses existing watermarking solutions in resilience to diffusion-model edits.
arXiv Detail & Related papers (2024-06-06T03:31:41Z) - A Training-Free Plug-and-Play Watermark Framework for Stable Diffusion [47.97443554073836]
Existing approaches involve training components or entire SDs to embed a watermark in generated images for traceability and responsibility attribution.
In the era of AI-generated content (AIGC), the rapid iteration of SDs renders retraining with watermark models costly.
We propose a training-free plug-and-play watermark framework for SDs.
arXiv Detail & Related papers (2024-04-08T15:29:46Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
This paper introduces ClearMark, the first DNN watermarking method designed for intuitive human assessment.
ClearMark embeds visible watermarks, enabling human decision-making without rigid value thresholds.
It shows an 8,544-bit watermark capacity comparable to the strongest existing work.
arXiv Detail & Related papers (2023-10-25T08:16:55Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.