Enhancing Modality Representation and Alignment for Multimodal Cold-start Active Learning
- URL: http://arxiv.org/abs/2412.09126v1
- Date: Thu, 12 Dec 2024 10:03:46 GMT
- Title: Enhancing Modality Representation and Alignment for Multimodal Cold-start Active Learning
- Authors: Meng Shen, Yake Wei, Jianxiong Yin, Deepu Rajan, Di Hu, Simon See,
- Abstract summary: We develop a two-stage method for Multi-Modal Cold-Start Active Learning (MMCSAL)
First, we observe the modality gap, a significant distance between the centroids of representations from different modalities, when only using cross-modal pairing information as self-supervision signals.
Secondly, we propose enhancing cross-modal alignment through regularization, thereby improving the quality of selected multimodal data pairs in MMCSAL.
- Score: 17.954883799795155
- License:
- Abstract: Training multimodal models requires a large amount of labeled data. Active learning (AL) aim to reduce labeling costs. Most AL methods employ warm-start approaches, which rely on sufficient labeled data to train a well-calibrated model that can assess the uncertainty and diversity of unlabeled data. However, when assembling a dataset, labeled data are often scarce initially, leading to a cold-start problem. Additionally, most AL methods seldom address multimodal data, highlighting a research gap in this field. Our research addresses these issues by developing a two-stage method for Multi-Modal Cold-Start Active Learning (MMCSAL). Firstly, we observe the modality gap, a significant distance between the centroids of representations from different modalities, when only using cross-modal pairing information as self-supervision signals. This modality gap affects data selection process, as we calculate both uni-modal and cross-modal distances. To address this, we introduce uni-modal prototypes to bridge the modality gap. Secondly, conventional AL methods often falter in multimodal scenarios where alignment between modalities is overlooked. Therefore, we propose enhancing cross-modal alignment through regularization, thereby improving the quality of selected multimodal data pairs in AL. Finally, our experiments demonstrate MMCSAL's efficacy in selecting multimodal data pairs across three multimodal datasets.
Related papers
- MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching [54.740256498985026]
Keypoint detection and description methods often struggle with multimodal data.
We propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching.
arXiv Detail & Related papers (2025-01-20T06:56:30Z) - MINIMA: Modality Invariant Image Matching [52.505282811925454]
We present MINIMA, a unified image matching framework for multiple cross-modal cases.
We scale up the modalities from cheap but rich RGB-only matching data, by means of generative models.
With MD-syn, we can directly train any advanced matching pipeline on randomly selected modality pairs to obtain cross-modal ability.
arXiv Detail & Related papers (2024-12-27T02:39:50Z) - Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances from multiple modalities when only a few labeled examples are available.
We propose a Generative Transfer Learning framework consisting of two stages: the first involves training on abundant unimodal data, and the second focuses on transfer learning to adapt to novel data.
Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - SUMMIT: Source-Free Adaptation of Uni-Modal Models to Multi-Modal
Targets [30.262094419776208]
Current approaches assume that the source data is available during adaptation and that the source consists of paired multi-modal data.
We propose a switching framework which automatically chooses between two complementary methods of cross-modal pseudo-label fusion.
Our method achieves an improvement in mIoU of up to 12% over competing baselines.
arXiv Detail & Related papers (2023-08-23T02:57:58Z) - Read, Look or Listen? What's Needed for Solving a Multimodal Dataset [7.0430001782867]
We propose a two-step method to analyze multimodal datasets, which leverages a small seed of human annotation to map each multimodal instance to the modalities required to process it.
We apply our approach to TVQA, a video question-answering dataset, and discover that most questions can be answered using a single modality, without a substantial bias towards any specific modality.
We analyze the MERLOT Reserve, finding that it struggles with image-based questions compared to text and audio, but also with auditory speaker identification.
arXiv Detail & Related papers (2023-07-06T08:02:45Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformer is a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client.
We develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling.
Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models.
arXiv Detail & Related papers (2023-03-27T07:07:33Z) - Few-shot Multimodal Sentiment Analysis based on Multimodal Probabilistic
Fusion Prompts [30.15646658460899]
Multimodal sentiment analysis has gained significant attention due to the proliferation of multimodal content on social media.
Existing studies in this area rely heavily on large-scale supervised data, which is time-consuming and labor-intensive to collect.
We propose a novel method called Multimodal Probabilistic Fusion Prompts (MultiPoint) that leverages diverse cues from different modalities for multimodal sentiment detection in the few-shot scenario.
arXiv Detail & Related papers (2022-11-12T08:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.