論文の概要: Foundation Models and Adaptive Feature Selection: A Synergistic Approach to Video Question Answering
- arxiv url: http://arxiv.org/abs/2412.09230v1
- Date: Thu, 12 Dec 2024 12:39:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:33:59.487992
- Title: Foundation Models and Adaptive Feature Selection: A Synergistic Approach to Video Question Answering
- Title(参考訳): 基礎モデルと適応的特徴選択:ビデオ質問応答に対する相乗的アプローチ
- Authors: Sai Bhargav Rongali, Mohamad Hassan N C, Ankit Jha, Neha Bhargava, Saurabh Prasad, Biplab Banerjee,
- Abstract要約: 我々は,マルチモーダルな知識をよりよく統合する3つの主要なイノベーションを取り入れたローカル・グローバル質問意識ビデオ埋め込み(LGQAVE)を紹介した。
LGQAVEは、質問に関する最も関連性の高いフレームを正確に識別するクロスアテンション機構を利用することで、従来のアドホックフレームサンプリングを越えている。
追加のクロスアテンションモジュールは、これらのローカルおよびグローバルな埋め込みを統合して、最終ビデオ埋め込みを生成する。
- 参考スコア(独自算出の注目度): 13.294004180200496
- License:
- Abstract: This paper tackles the intricate challenge of video question-answering (VideoQA). Despite notable progress, current methods fall short of effectively integrating questions with video frames and semantic object-level abstractions to create question-aware video representations. We introduce Local-Global Question Aware Video Embedding (LGQAVE), which incorporates three major innovations to integrate multi-modal knowledge better and emphasize semantic visual concepts relevant to specific questions. LGQAVE moves beyond traditional ad-hoc frame sampling by utilizing a cross-attention mechanism that precisely identifies the most relevant frames concerning the questions. It captures the dynamics of objects within these frames using distinct graphs, grounding them in question semantics with the miniGPT model. These graphs are processed by a question-aware dynamic graph transformer (Q-DGT), which refines the outputs to develop nuanced global and local video representations. An additional cross-attention module integrates these local and global embeddings to generate the final video embeddings, which a language model uses to generate answers. Extensive evaluations across multiple benchmarks demonstrate that LGQAVE significantly outperforms existing models in delivering accurate multi-choice and open-ended answers.
- Abstract(参考訳): 本稿では,ビデオQA(Video QA)の難問に対処する。
顕著な進歩にもかかわらず、現在の手法では、ビデオフレームとセマンティックオブジェクトレベルの抽象化を効果的に統合して、質問認識ビデオ表現を作成するには不十分である。
ローカル・グローバル・クエスチョン・アウェア・ビデオ・エンベディング (LGQAVE) を導入し, マルチモーダル・ナレッジをよりよく統合し, 特定の質問に関連するセマンティック・ビジュアル概念を強調する3つの主要なイノベーションを取り入れた。
LGQAVEは、質問に関する最も関連性の高いフレームを正確に識別するクロスアテンション機構を利用することで、従来のアドホックフレームサンプリングを越えている。
異なるグラフを用いてこれらのフレーム内のオブジェクトのダイナミックスをキャプチャし、ミニGPTモデルで問題セマンティクスをグラウンド化する。
これらのグラフはQ-DGT(Q-Aware dynamic graph transformer)によって処理され、出力を洗練し、グローバルおよびローカルなビデオ表現を開発する。
追加のクロスアテンションモジュールは、これらのローカルおよびグローバルな埋め込みを統合して、言語モデルが回答を生成するために使用する最後のビデオ埋め込みを生成する。
複数のベンチマークにわたる広範囲な評価は、LGQAVEが既存のモデルよりはるかに優れており、正確なマルチ選択とオープンエンドの回答が得られていることを示している。
関連論文リスト
- Admitting Ignorance Helps the Video Question Answering Models to Answer [82.22149677979189]
モデルはしばしばショートカットを定め、結果として質問と回答の間に急激な相関関係が生じる、と我々は主張する。
そこで本研究では,モデルに不明瞭さを認めざるを得ない新たな学習手法を提案する。
実際に、我々のフレームワークに最先端のモデルを統合することで、その有効性を検証する。
論文 参考訳(メタデータ) (2025-01-15T12:44:52Z) - Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering [71.62961521518731]
HeurVidQAは、ドメイン固有のエンティティアクションを利用して、事前訓練されたビデオ言語基盤モデルを洗練するフレームワークである。
我々のアプローチでは、これらのモデルを暗黙の知識エンジンとして扱い、ドメイン固有のエンティティアクションプロンサを使用して、推論を強化する正確な手がかりにモデルを焦点を向けます。
論文 参考訳(メタデータ) (2024-10-12T06:22:23Z) - Weakly Supervised Gaussian Contrastive Grounding with Large Multimodal Models for Video Question Answering [11.244643114253773]
Video Question(ビデオQA)は、ビデオで観察される情報に基づいて、自然言語の質問に答えることを目的としている。
視覚的な入力として疑問クリティカルな瞬間に答えを推論するために,LMMを強制する,弱い教師付きフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T14:21:46Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
本稿では,映像情報とテキスト情報の相乗効果を向上するための最先端フレームワークであるVaQuitAを紹介する。
データレベルでは、フレームを均一にサンプリングする代わりに、CLIPスコアランキングでガイドされるサンプリング手法を実装している。
機能レベルでは、Visual-Query Transformerと一緒にトレーニング可能なVideo Perceiverを統合します。
論文 参考訳(メタデータ) (2023-12-04T19:48:02Z) - Rethinking Multi-Modal Alignment in Video Question Answering from
Feature and Sample Perspectives [30.666823939595627]
本稿では,ビデオQAにおけるマルチモーダルアライメント問題について,特徴とサンプルの観点から再考する。
我々はヘテロジニアスグラフアーキテクチャを採用し、トラジェクトリレベルとフレームレベルの両方の視覚特徴を言語特徴と整合させる階層的なフレームワークを設計する。
提案手法は, NExT-QAベンチマークにおいて, 最先端モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-04-25T10:42:07Z) - Video as Conditional Graph Hierarchy for Multi-Granular Question
Answering [80.94367625007352]
ビデオはフレームシーケンスで表現されるが、視覚要素はシーケンシャルではなく、セマンティック空間において階層的である。
本稿では,異なる粒度の視覚的事実をレベルワイドに織り込む条件付きグラフ階層として,動画をモデル化することを提案する。
論文 参考訳(メタデータ) (2021-12-12T10:35:19Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。
DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。
MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
論文 参考訳(メタデータ) (2021-05-13T17:33:26Z) - Relation-aware Hierarchical Attention Framework for Video Question
Answering [6.312182279855817]
ビデオ中のオブジェクトの静的な関係と動的関係を学習するために,RHA(Relation-aware Hierarchical Attention)フレームワークを提案する。
特に、ビデオや質問は、まず事前訓練されたモデルによって埋め込まれ、視覚とテキストの特徴を得る。
我々は,時間的,空間的,意味的関係を考察し,階層的注意機構によりマルチモーダルな特徴を融合して回答を予測する。
論文 参考訳(メタデータ) (2021-05-13T09:35:42Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
本稿では,マルチモーダルな入力源を効果的に統合し,時間的関連情報から質問に答えるビデオ質問応答モデルを提案する。
また,2レベルアテンション(単語・オブジェクト・フレームレベル),異なるソース(ビデオ・高密度キャプション)に対するマルチヘッド自己統合,ゲートへのより関連性の高い情報伝達などで構成されている。
当社のモデルは,各モデルコンポーネントが大きな利益をもたらす,難易度の高いTVQAデータセット上で評価され,全体的なモデルでは,最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-05-13T16:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。