Long-lived quantum correlation by cavity-mediated subradiance
- URL: http://arxiv.org/abs/2412.09252v1
- Date: Thu, 12 Dec 2024 13:06:39 GMT
- Title: Long-lived quantum correlation by cavity-mediated subradiance
- Authors: Kyu-Young Kim, Jin Hee Lee, Woong Bae Jeon, Dong Hyun Park, Suk In Park, Jin Dong Song, Changhyoup Lee, Je-Hyung Kim,
- Abstract summary: We show a long-lived subradiant state among multiple quantum emitters coupled to a directional low Q cavity.
As an important hallmark of a subradiant state, the system shows large photon bunching and single-photon decay.
Our approach to inducing cavity-mediated subradiance paves the way for creating and harnessing quantum correlations in quantum emitters.
- Score: 1.2524493413429627
- License:
- Abstract: Cooperative effects such as super(sub)radiance in quantum systems arise from the interplay among quantum emitters. While bright superradiant states have been extensively studied and yielded significant insights into cooperative phenomena, subradiant states have remained less explored due to their inherently dark state nature. However, subradiance holds significant potential as valuable quantum resources that exploit long-lived and large-scale entanglement, which is a key for advancing quantum information technologies. Here, we demonstrate a long-lived subradiant state among multiple quantum emitters coupled to a directional low Q cavity. In a tailored photonic environment with balanced cavity dissipation, emitter-field coupling strength, and incoherent pumping, two coupled quantum dots exhibit a steady-state population in a subradiant state with highly negative cooperativity. As an important hallmark of a subradiant state, the system shows large photon bunching (g^((2))(0)>>2) and suppressed single-photon decay. In addition, controlling the excitation wavelength provides a useful tool for manipulating dephasing and the number of coupled emitters, which leads to significant changes in photon statistics. Our approach to inducing cavity-mediated subradiance paves the way for creating and harnessing quantum correlations in quantum emitters via a long-lived entangled quantum state, essential for quantum storage and metrology.
Related papers
- Unlocking multiphoton emission from a single-photon source through mean-field engineering [0.0]
In quantum mechanics, multiphoton emission can turn out to be even more fundamental and interesting than the single-photon emission.
We show how one can control the multiphoton dynamics of a two-level system by disrupting quantum interferences.
arXiv Detail & Related papers (2024-11-15T18:59:18Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Coherent super- and subradiant dynamics between distant optical quantum
emitters [5.240984067778683]
Single emitter radiation can be tailored by the photonic environment.
Multiple emitters fundamentally extends this picture following a "more is different" dictum.
Subradiant states are particularly challenging to realize being highly sensitive to imperfections and decoherence.
arXiv Detail & Related papers (2022-10-05T17:59:06Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.