FAMNet: Frequency-aware Matching Network for Cross-domain Few-shot Medical Image Segmentation
- URL: http://arxiv.org/abs/2412.09319v4
- Date: Fri, 27 Dec 2024 06:49:21 GMT
- Title: FAMNet: Frequency-aware Matching Network for Cross-domain Few-shot Medical Image Segmentation
- Authors: Yuntian Bo, Yazhou Zhu, Lunbo Li, Haofeng Zhang,
- Abstract summary: Existing few-shot medical image segmentation (FSMIS) models fail to address a practical issue in medical imaging: the domain shift caused by different imaging techniques.<n>We propose a Frequency-aware Matching Network (FAMNet), which includes two key components: a Frequency-aware Matching (FAM) module and a Multi-Spectral Fusion (MSF) module.<n>Our FAMNet surpasses existing FSMIS models and Cross-domain Few-shot Semantic models on three cross-domain datasets.
- Score: 15.066227784509303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing few-shot medical image segmentation (FSMIS) models fail to address a practical issue in medical imaging: the domain shift caused by different imaging techniques, which limits the applicability to current FSMIS tasks. To overcome this limitation, we focus on the cross-domain few-shot medical image segmentation (CD-FSMIS) task, aiming to develop a generalized model capable of adapting to a broader range of medical image segmentation scenarios with limited labeled data from the novel target domain. Inspired by the characteristics of frequency domain similarity across different domains, we propose a Frequency-aware Matching Network (FAMNet), which includes two key components: a Frequency-aware Matching (FAM) module and a Multi-Spectral Fusion (MSF) module. The FAM module tackles two problems during the meta-learning phase: 1) intra-domain variance caused by the inherent support-query bias, due to the different appearances of organs and lesions, and 2) inter-domain variance caused by different medical imaging techniques. Additionally, we design an MSF module to integrate the different frequency features decoupled by the FAM module, and further mitigate the impact of inter-domain variance on the model's segmentation performance. Combining these two modules, our FAMNet surpasses existing FSMIS models and Cross-domain Few-shot Semantic Segmentation models on three cross-domain datasets, achieving state-of-the-art performance in the CD-FSMIS task.
Related papers
- Multimodal Causal-Driven Representation Learning for Generalizable Medical Image Segmentation [56.52520416420957]
We propose Multimodal Causal-Driven Representation Learning (MCDRL) to tackle domain generalization in medical image segmentation.<n>MCDRL consistently outperforms competing methods, yielding superior segmentation accuracy and exhibiting robust generalizability.
arXiv Detail & Related papers (2025-08-07T03:41:41Z) - CMP: A Composable Meta Prompt for SAM-Based Cross-Domain Few-Shot Segmentation [20.489756120720568]
Cross-Domain Few-Shots (CD-FSS) remains challenging due to limited data and domain shifts.<n>Recent foundation models like the Segment Anything Model (SAM) have shown remarkable zero-shot generalization capability in general segmentation tasks.<n>We propose the Composable Meta-Prompt framework that introduces three key modules: (i) the Reference Complement and Transformation (RCT) module for semantic expansion, (ii) the Composable Meta-Prompt Generation (CMPG) module for automated meta-prompt synthesis, and (iii) the Frequency-Aware Interaction (FAI) module for domain discrepancy mitigation.
arXiv Detail & Related papers (2025-07-22T16:42:23Z) - Spatial and Frequency Domain Adaptive Fusion Network for Image Deblurring [0.0]
Image deblurring aims to reconstruct a latent sharp image from its corresponding blurred one.
We propose a spatial-frequency domain adaptive fusion network (SFAFNet) to address this limitation.
Our SFAFNet performs favorably compared to state-of-the-art approaches on commonly used benchmarks.
arXiv Detail & Related papers (2025-02-20T02:43:55Z) - RobustEMD: Domain Robust Matching for Cross-domain Few-shot Medical Image Segmentation [22.375175204590747]
Few-shot medical image segmentation (FSMIS) aims to perform the limited data learning in the medical image analysis scope.
Current FSMIS models are all trained and deployed on the same data domain.
How to enhance the FSMIS models to generalize to well across the different specific medical imaging domains?
arXiv Detail & Related papers (2024-10-01T22:39:26Z) - Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention [1.1155836879100416]
We propose a Modality-agnostic Domain Generalizable Network (MADGNet) for medical image segmentation.
MFMSA block refines the process of spatial feature extraction, particularly in capturing boundary features.
E-SDM mitigates information loss in multi-task learning with deep supervision.
arXiv Detail & Related papers (2024-05-10T07:34:36Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z) - Multi-Modal Cross-Domain Alignment Network for Video Moment Retrieval [55.122020263319634]
Video moment retrieval (VMR) aims to localize the target moment from an untrimmed video according to a given language query.
In this paper, we focus on a novel task: cross-domain VMR, where fully-annotated datasets are available in one domain but the domain of interest only contains unannotated datasets.
We propose a novel Multi-Modal Cross-Domain Alignment network to transfer the annotation knowledge from the source domain to the target domain.
arXiv Detail & Related papers (2022-09-23T12:58:20Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
We propose a novel Multi-scale Multi-target Domain Adversarial Network (M2DAN) for angle closure classification.
Based on these domain-invariant features at different scales, the deep model trained on the source domain is able to classify angle closure on multiple target domains.
arXiv Detail & Related papers (2022-08-25T15:27:55Z) - Generalizable Medical Image Segmentation via Random Amplitude Mixup and
Domain-Specific Image Restoration [17.507951655445652]
We present a novel generalizable medical image segmentation method.
To be specific, we design our approach as a multi-task paradigm by combining the segmentation model with a self-supervision domain-specific image restoration module.
We demonstrate the performance of our method on two public generalizable segmentation benchmarks in medical images.
arXiv Detail & Related papers (2022-08-08T03:56:20Z) - Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel
Segmentation via Disentangling Representation Style Transfer and
Collaborative Consistency Learning [3.9562534927482704]
We propose DCDA, a novel cross-modality unsupervised domain adaptation framework for tasks with large domain shifts.
Our framework achieves Dice scores close to target-trained oracle both from OCTA to OCT and from OCT to OCTA, significantly outperforming other state-of-the-art methods.
arXiv Detail & Related papers (2022-01-13T07:03:16Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Graphical Modeling for Multi-Source Domain Adaptation [56.05348879528149]
Multi-Source Domain Adaptation (MSDA) focuses on transferring the knowledge from multiple source domains to the target domain.
We propose two types of graphical models,i.e. Conditional Random Field for MSDA (CRF-MSDA) and Markov Random Field for MSDA (MRF-MSDA)
We evaluate these two models on four standard benchmark data sets of MSDA with distinct domain shift and data complexity.
arXiv Detail & Related papers (2021-04-27T09:04:22Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.