論文の概要: Towards Open-Vocabulary Video Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2412.09329v1
- Date: Thu, 12 Dec 2024 14:53:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:31.218363
- Title: Towards Open-Vocabulary Video Semantic Segmentation
- Title(参考訳): オープン語彙ビデオセマンティックセマンティックセグメンテーションに向けて
- Authors: Xinhao Li, Yun Liu, Guolei Sun, Min Wu, Le Zhang, Ce Zhu,
- Abstract要約: オープン語彙ビデオセマンティック(OV-VSS: Open Vocabulary Video Semantic)タスクを導入する。
OV-VSSの性能を向上させるため,空間時間融合モジュールを統合したロバストベースラインOV2VSSを提案する。
我々のアプローチには、ビデオコンテキスト内のテキスト情報を解釈する能力を強化するビデオテキストエンコーディングも含まれている。
- 参考スコア(独自算出の注目度): 40.58291642595943
- License:
- Abstract: Semantic segmentation in videos has been a focal point of recent research. However, existing models encounter challenges when faced with unfamiliar categories. To address this, we introduce the Open Vocabulary Video Semantic Segmentation (OV-VSS) task, designed to accurately segment every pixel across a wide range of open-vocabulary categories, including those that are novel or previously unexplored. To enhance OV-VSS performance, we propose a robust baseline, OV2VSS, which integrates a spatial-temporal fusion module, allowing the model to utilize temporal relationships across consecutive frames. Additionally, we incorporate a random frame enhancement module, broadening the model's understanding of semantic context throughout the entire video sequence. Our approach also includes video text encoding, which strengthens the model's capability to interpret textual information within the video context. Comprehensive evaluations on benchmark datasets such as VSPW and Cityscapes highlight OV-VSS's zero-shot generalization capabilities, especially in handling novel categories. The results validate OV2VSS's effectiveness, demonstrating improved performance in semantic segmentation tasks across diverse video datasets.
- Abstract(参考訳): ビデオのセマンティックセグメンテーションは最近の研究の焦点となっている。
しかし、既存のモデルは、馴染みの無いカテゴリに直面したときに困難に直面する。
これを解決するために,オープンボキャブラリビデオセマンティックセグメンテーション(OV-VSS)タスクを導入する。
OV-VSSの性能を向上させるために,空間時間融合モジュールを統合した頑健なベースラインOV2VSSを提案する。
さらに、ランダムなフレーム拡張モジュールを組み込み、ビデオシーケンス全体を通して意味的コンテキストに対するモデルの理解を広げる。
我々のアプローチには、ビデオコンテキスト内のテキスト情報を解釈する能力を強化するビデオテキストエンコーディングも含まれている。
VSPWやCityscapesといったベンチマークデータセットの総合評価では、特に新しいカテゴリを扱う場合、OV-VSSのゼロショット一般化機能を強調している。
その結果、OV2VSSの有効性が検証され、多様なビデオデータセット間のセマンティックセグメンテーションタスクのパフォーマンスが改善された。
関連論文リスト
- Test-Time Optimization for Domain Adaptive Open Vocabulary Segmentation [15.941958367737408]
ゼロショットでオープンなセマンティックセマンティックセグメンテーション(OVSS)のためのフレームワークであるSeg-TTOを提案する。
このギャップに対処するために、セグメンテーション固有のテスト時間最適化にフォーカスします。
我々は、Seg-TTOを最先端の3つのOVSSアプローチと統合し、様々な専門ドメインをカバーする22の課題のOVSSタスクを評価する。
論文 参考訳(メタデータ) (2025-01-08T18:58:24Z) - Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
ビデオセグメント化は、ビデオシーケンスを、オブジェクトやフレーム内の関心領域に基づいて意味のあるセグメントに分割することを目的としている。
現在のビデオセグメンテーションモデルは、しばしば画像セグメンテーション技術から派生している。
本研究では,空間的・時間的特徴集約を向上する学習戦略であるMasked Video Consistencyを提案する。
論文 参考訳(メタデータ) (2024-08-20T08:08:32Z) - Zero-Shot Video Semantic Segmentation based on Pre-Trained Diffusion Models [96.97910688908956]
本稿では,事前学習した拡散モデルに基づくビデオセマンティック(VSS)の最初のゼロショット手法を提案する。
予め訓練された画像とビデオ拡散モデルに基づくVSSに適したフレームワークを提案する。
実験により,提案手法は既存のゼロショット画像セマンティックセグメンテーション手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-27T08:39:38Z) - DVIS++: Improved Decoupled Framework for Universal Video Segmentation [30.703276476607545]
我々は,最初のオープン語彙ユニバーサルビデオセグメンテーションフレームワークであるOV-DVIS++を提案する。
CLIPとDVIS++を統合することで、最初のオープン語彙のユニバーサルビデオセグメンテーションフレームワークであるOV-DVIS++を提案する。
論文 参考訳(メタデータ) (2023-12-20T03:01:33Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - SOC: Semantic-Assisted Object Cluster for Referring Video Object
Segmentation [35.063881868130075]
本稿では,映像レベルの視覚言語的アライメントを高めることによって,映像オブジェクトセグメンテーション(RVOS)について述べる。
本稿では,映像コンテンツとテキストガイダンスを集約したセマンティック支援オブジェクトクラスタ(SOC)を提案する。
我々は、人気のあるRVOSベンチマークで広範な実験を行い、我々の手法は、すべてのベンチマークにおける最先端の競合よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2023-05-26T15:13:44Z) - Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene
Segmentation [58.74791043631219]
セグメンテーション性能を高めるために,映像内および映像間関係を補完する新しいフレームワークSTswinCLを提案する。
本研究では,EndoVis18 ChallengeとCaDISデータセットを含む2つの公開手術ビデオベンチマークに対するアプローチを広く検証する。
実験により,従来の最先端手法を一貫して超越した提案手法の有望な性能を示す。
論文 参考訳(メタデータ) (2022-03-29T05:52:23Z) - BiST: Bi-directional Spatio-Temporal Reasoning for Video-Grounded
Dialogues [95.8297116307127]
ビデオにおける高精細クエリのための視覚言語ニューラルフレームワークBi-directional Spatio-Temporal Learning (BiST)を提案する。
具体的には,空間的情報と時間的情報の両方を利用して,2つの特徴空間間の動的情報拡散を学習する。
BiSTは競争性能を達成し、大規模なAVSDベンチマークで適切な応答を生成する。
論文 参考訳(メタデータ) (2020-10-20T07:43:00Z) - Video Panoptic Segmentation [117.08520543864054]
我々は,ビデオパノプティクスセグメンテーションと呼ばれる,このタスクの新たな拡張手法を提案し,検討する。
この新しいタスクの研究を活性化するために,2種類のビデオパノプティクスデータセットを提示する。
本稿では,ビデオフレーム内のオブジェクトクラス,バウンディングボックス,マスク,インスタンスID追跡,セマンティックセマンティックセマンティックセマンティックセマンティクスを共同で予測する新しいビデオパノプティックセマンティクスネットワーク(VPSNet)を提案する。
論文 参考訳(メタデータ) (2020-06-19T19:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。