Multi-Layer Cycle Benchmarking for high-accuracy error characterization
- URL: http://arxiv.org/abs/2412.09332v1
- Date: Thu, 12 Dec 2024 15:00:31 GMT
- Title: Multi-Layer Cycle Benchmarking for high-accuracy error characterization
- Authors: Alessio Calzona, Miha Papič, Pedro Figueroa-Romero, Adrian Auer,
- Abstract summary: We introduce Multi-Layer Cycle Benchmarking (MLCB) to improve the learnability associated with effective Pauli noise models.
In realistic scenarios, MLCB can reduce unlearnable noise degrees of freedom by up to $75%$, improving the accuracy of sparse Pauli-Lindblad noise models.
Our results highlight MLCB as a scalable, practical tool for precise noise characterization and improved quantum computation.
- Score: 0.0
- License:
- Abstract: Accurate noise characterization is essential for reliable quantum computation. Effective Pauli noise models have emerged as powerful tools, offering detailed description of the error processes with a manageable number of parameters, which guarantees the scalability of the characterization procedure. However, a fundamental limitation in the learnability of Pauli fidelities impedes full high-accuracy characterization of both general and effective Pauli noise, thereby restricting e.g., the performance of noise-aware error mitigation techniques. We introduce Multi-Layer Cycle Benchmarking (MLCB), an enhanced characterization protocol that improves the learnability associated with effective Pauli noise models by jointly analyzing multiple layers of Clifford gates. We show a simple experimental implementation and demonstrate that, in realistic scenarios, MLCB can reduce unlearnable noise degrees of freedom by up to $75\%$, improving the accuracy of sparse Pauli-Lindblad noise models and boosting the performance of error mitigation techniques like probabilistic error cancellation. Our results highlight MLCB as a scalable, practical tool for precise noise characterization and improved quantum computation.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - One-step Noisy Label Mitigation [86.57572253460125]
Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical.
We propose One-step Anti-Noise (OSA), a model-agnostic noisy label mitigation paradigm.
We empirically demonstrate the superiority of OSA, highlighting its enhanced training robustness, improved task transferability, ease of deployment, and reduced computational costs.
arXiv Detail & Related papers (2024-10-02T18:42:56Z) - Noise-resilient and resource-efficient hybrid algorithm for robust quantum gap estimation [0.0]
We present a hybrid quantum algorithm for estimating gaps in many-body energy spectra.
We employ error mitigation strategies that optimize the utilization of quantum resources.
Results underscore the potential to enable accurate quantum simulations on near-term noisy quantum devices.
arXiv Detail & Related papers (2024-05-16T17:57:15Z) - Modeling error correction with Lindblad dynamics and approximate channels [0.0]
We study how different approximations of the noise capture the performance of the five-qubit code.
A Pauli approximation going beyond a single-qubit channel, is sensitive to the details of the noise, state, and decoder.
We calculate the code pseudo-threshold emerging within this model, and demonstrate how knowledge of the qubit parameters and connectivity can be used to design better decoders.
arXiv Detail & Related papers (2024-02-26T16:48:34Z) - Characterization of coherent errors in gate layers with robustness to Pauli noise [0.0]
State-of-the-art characterization protocols often focus on incoherent noise and eliminate coherent errors when using Pauli or Clifford twirling techniques.
We motivate the extension of an incoherent local Pauli noise model to coherent errors and present a practical characterization protocol for an arbitrary gate layer.
arXiv Detail & Related papers (2023-07-17T18:00:02Z) - Efficient learning of the structure and parameters of local Pauli noise
channels [1.5229257192293197]
We present a novel approach for learning Pauli noise channels over n qubits.
We achieve our results by leveraging a groundbreaking result by Bresler for efficiently learning Gibbs measures.
Our method is efficient both in the number of samples and postprocessing without giving up on other desirable features.
arXiv Detail & Related papers (2023-07-06T12:42:49Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Error Mitigation Thresholds in Noisy Random Quantum Circuits [0.30723404270319693]
We study the robustness of probabilistic error cancellation and tensor network error mitigation when the noise is imperfectly characterized.
For one-dimensional circuits, error mitigation fails at an $mathcalO(1)$ time for any imperfection in the characterization of disorder.
We discuss further implications for tests of quantum computational advantage, fault-tolerant probes of measurement-induced phase transitions, and quantum algorithms in near-term devices.
arXiv Detail & Related papers (2023-02-08T19:00:01Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
We propose a meta-learning method which is capable of adaptively learning a hyper parameter prediction function, called Noise-Aware-Robust-Loss-Adjuster (NARL-Adjuster for brevity)
Four SOTA robust loss functions are attempted to be integrated with our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its noise tolerance and performance.
arXiv Detail & Related papers (2023-01-18T04:54:58Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.