Negative Pre-aware for Noisy Cross-modal Matching
- URL: http://arxiv.org/abs/2312.05777v2
- Date: Fri, 15 Dec 2023 02:18:09 GMT
- Title: Negative Pre-aware for Noisy Cross-modal Matching
- Authors: Xu Zhang and Hao Li and Mang Ye
- Abstract summary: Cross-modal noise-robust learning is a challenging task since noisy correspondence is hard to recognize and rectify.
We present a novel Negative Pre-aware Cross-modal matching solution for large visual-language model fine-tuning on noisy downstream tasks.
- Score: 46.5591267410225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-modal noise-robust learning is a challenging task since noisy
correspondence is hard to recognize and rectify. Due to the cumulative and
unavoidable negative impact of unresolved noise, existing methods cannot
maintain a stable performance when the noise increases. In this paper, we
present a novel Negative Pre-aware Cross-modal (NPC) matching solution for
large visual-language model fine-tuning on noisy downstream tasks. It is
featured in two aspects: (1) For noise recognition and resistance, previous
methods usually directly filter out a noise subset, we propose to estimate the
negative impact of each sample. It does not need additional correction
mechanisms that may predict unreliable correction results, leading to
self-reinforcing error. We assign a confidence weight to each sample according
to its negative impact in the training process. This adaptively adjusts the
contribution of each sample to avoid noisy accumulation. (2) For maintaining
stable performance with increasing noise, we utilize the memorization effect of
DNNs by maintaining a memory bank. Specifically, we apply GMM to select
high-confident clean samples as the memory entry, where the memory entry is
used to estimate the negative impact of each sample. Since clean samples are
easier distinguished by GMM with increasing noise, the memory bank can still
maintain high quality at a high noise ratio. Compared to the correction
mechanism focusing on noise samples, memory bank-based estimation is more
robust, which makes the model performance stable on noisy datasets. Extensive
experiments demonstrate that our method significantly improves matching
accuracy and performance stability at increasing noise ratio. Our approach also
surpasses the state-of-the-art methods by a large margin. The code is available
at: https://github.com/ZhangXu0963/NPC.
Related papers
- Double Correction Framework for Denoising Recommendation [45.98207284259792]
In implicit feedback, noisy samples can affect precise user preference learning.
A popular solution is based on dropping noisy samples in the model training phase.
We propose a Double Correction Framework for Denoising Recommendation.
arXiv Detail & Related papers (2024-05-18T12:15:10Z) - Understanding the Effect of Noise in LLM Training Data with Algorithmic
Chains of Thought [0.0]
We study how noise in chain of thought impacts task performance in highly-controlled setting.
We define two types of noise: textitstatic noise, a local form of noise which is applied after the CoT trace is computed, and textitdynamic noise, a global form of noise which propagates errors in the trace as it is computed.
We find fine-tuned models are extremely robust to high levels of static noise but struggle significantly more with lower levels of dynamic noise.
arXiv Detail & Related papers (2024-02-06T13:59:56Z) - Label Noise: Correcting the Forward-Correction [0.0]
Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels.
We propose an approach to tackling overfitting caused by label noise.
Motivated by this observation, we propose imposing a lower bound on the training loss to mitigate overfitting.
arXiv Detail & Related papers (2023-07-24T19:41:19Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Confidence-based Reliable Learning under Dual Noises [46.45663546457154]
Deep neural networks (DNNs) have achieved remarkable success in a variety of computer vision tasks.
Yet, the data collected from the open world are unavoidably polluted by noise, which may significantly undermine the efficacy of the learned models.
Various attempts have been made to reliably train DNNs under data noise, but they separately account for either the noise existing in the labels or that existing in the images.
This work provides a first, unified framework for reliable learning under the joint (image, label)-noise.
arXiv Detail & Related papers (2023-02-10T07:50:34Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Identifying Hard Noise in Long-Tailed Sample Distribution [76.16113794808001]
We introduce Noisy Long-Tailed Classification (NLT)
Most de-noising methods fail to identify the hard noises.
We design an iterative noisy learning framework called Hard-to-Easy (H2E)
arXiv Detail & Related papers (2022-07-27T09:03:03Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
Noise robustness is essential for deploying automatic speech recognition systems in real-world environments.
We employ a noise-robust representation learned by a refined self-supervised framework for noisy speech recognition.
We achieve comparable performance to the best supervised approach reported with only 16% of labeled data.
arXiv Detail & Related papers (2021-10-28T20:39:02Z) - Denoising Distantly Supervised Named Entity Recognition via a
Hypergeometric Probabilistic Model [26.76830553508229]
Hypergeometric Learning (HGL) is a denoising algorithm for distantly supervised named entity recognition.
HGL takes both noise distribution and instance-level confidence into consideration.
Experiments show that HGL can effectively denoise the weakly-labeled data retrieved from distant supervision.
arXiv Detail & Related papers (2021-06-17T04:01:25Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
Deep neural networks are prone to overfitting in the presence of label noise.
We propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning.
Our framework generally outperforms at medium to high noise levels.
arXiv Detail & Related papers (2021-05-27T13:49:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.