Distributed Intelligent System Architecture for UAV-Assisted Monitoring of Wind Energy Infrastructure
- URL: http://arxiv.org/abs/2412.09387v1
- Date: Thu, 12 Dec 2024 15:53:58 GMT
- Title: Distributed Intelligent System Architecture for UAV-Assisted Monitoring of Wind Energy Infrastructure
- Authors: Serhii Svystun, Oleksandr Melnychenko, Pavlo Radiuk, Oleg Savenko, Andrii Lysyi,
- Abstract summary: This paper presents a novel intelligent system architecture designed for the dynamic collection and real-time processing of visual data to detect defects in wind turbines.
The system employs advanced algorithms within a distributed framework to enhance inspection accuracy and efficiency.
An experimental study conducted at the "Staryi Sambir-1" wind power plant in Ukraine demonstrates the system's effectiveness.
- Score: 14.478269910694003
- License:
- Abstract: With the rapid development of green energy, the efficiency and reliability of wind turbines are key to sustainable renewable energy production. For that reason, this paper presents a novel intelligent system architecture designed for the dynamic collection and real-time processing of visual data to detect defects in wind turbines. The system employs advanced algorithms within a distributed framework to enhance inspection accuracy and efficiency using unmanned aerial vehicles (UAVs) with integrated visual and thermal sensors. An experimental study conducted at the "Staryi Sambir-1" wind power plant in Ukraine demonstrates the system's effectiveness, showing a significant improvement in defect detection accuracy (up to 94%) and a reduction in inspection time per turbine (down to 1.5 hours) compared to traditional methods. The results show that the proposed intelligent system architecture provides a scalable and reliable solution for wind turbine maintenance, contributing to the durability and performance of renewable energy infrastructure.
Related papers
- Barely-Visible Surface Crack Detection for Wind Turbine Sustainability [0.0]
We introduce a novel dataset of barely-visible hairline cracks collected from numerous wind turbine inspections.
To prove the efficacy of our dataset, we detail our end-to-end deployed turbine crack detection pipeline.
arXiv Detail & Related papers (2024-07-09T19:03:48Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - Prediction of wind turbines power with physics-informed neural networks
and evidential uncertainty quantification [2.126171264016785]
We use physics-informed neural networks to reproduce historical data coming from 4 turbines in a wind farm.
The developed models for regression of the power, torque, and power coefficient showed great accuracy for both real data and physical equations governing the system.
arXiv Detail & Related papers (2023-07-27T07:58:38Z) - A real-time material breakage detection for offshore wind turbines based
on improved neural network algorithm [0.0]
This study introduces a novel approach leveraging an advanced version of the YOLOv8 object detection model.
We employ a dataset of 5,432 images from the Saemangeum offshore wind farm and a publicly available dataset.
The findings reveal a substantial enhancement in defect detection stability, marking a significant stride towards efficient turbine maintenance.
arXiv Detail & Related papers (2023-07-25T18:50:05Z) - Fast Recognition of birds in offshore wind farms based on an improved
deep learning model [0.19336815376402716]
The accuracy of this model in bird detection tasks can reach 87.40%, an increase of 21.25%.
The model can detect birds near wind turbines in real time and shows strong stability in night, rainy and shaky conditions.
arXiv Detail & Related papers (2023-06-28T08:47:04Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - DADFNet: Dual Attention and Dual Frequency-Guided Dehazing Network for
Video-Empowered Intelligent Transportation [79.18450119567315]
Adverse weather conditions pose severe challenges for video-based transportation surveillance.
We propose a dual attention and dual frequency-guided dehazing network (termed DADFNet) for real-time visibility enhancement.
arXiv Detail & Related papers (2023-04-19T11:55:30Z) - Online Dynamic Reliability Evaluation of Wind Turbines based on
Drone-assisted Monitoring [6.3640143289918045]
We propose a drone-assisted monitoring based method for online reliability evaluation of wind turbines.
A blade system of a wind turbine is used as an illustrative example to demonstrate the proposed approach.
arXiv Detail & Related papers (2022-11-23T19:11:33Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.