Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic Shape
Optimization
- URL: http://arxiv.org/abs/2101.04757v2
- Date: Thu, 6 Jul 2023 04:12:37 GMT
- Title: Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic Shape
Optimization
- Authors: Yuyang Wang, Kenji Shimada, Amir Barati Farimani
- Abstract summary: We propose a data-driven shape encoding and generating method, which automatically learns representations from existing airfoils and uses the learned representations to generate new airfoils.
Our model is built upon VAEGAN, a neural network that combines Variational Autoencoder with Generative Adversarial Network and is trained by the gradient-based technique.
- Score: 9.432375767178284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current design of aerodynamic shapes, like airfoils, involves
computationally intensive simulations to explore the possible design space.
Usually, such design relies on the prior definition of design parameters and
places restrictions on synthesizing novel shapes. In this work, we propose a
data-driven shape encoding and generating method, which automatically learns
representations from existing airfoils and uses the learned representations to
generate new airfoils. The representations are then used in the optimization of
synthesized airfoil shapes based on their aerodynamic performance. Our model is
built upon VAEGAN, a neural network that combines Variational Autoencoder with
Generative Adversarial Network and is trained by the gradient-based technique.
Our model can (1) encode the existing airfoil into a latent vector and
reconstruct the airfoil from that, (2) generate novel airfoils by randomly
sampling the latent vectors and mapping the vectors to the airfoil coordinate
domain, and (3) synthesize airfoils with desired aerodynamic properties by
optimizing learned features via a genetic algorithm. Our experiments show that
the learned features encode shape information thoroughly and comprehensively
without predefined design parameters. By interpolating/extrapolating feature
vectors or sampling from Gaussian noises, the model can automatically
synthesize novel airfoil shapes, some of which possess competitive or even
better aerodynamic properties comparing to airfoils used for model training
purposes. By optimizing shapes on the learned latent domain via a genetic
algorithm, synthesized airfoils can evolve to target aerodynamic properties.
This demonstrates an efficient learning-based airfoil design framework, which
encodes and optimizes the airfoil on the latent domain and synthesizes
promising airfoil candidates for required aerodynamic performance.
Related papers
- Airfoil Diffusion: Denoising Diffusion Model For Conditional Airfoil Generation [7.136205674624813]
We introduce a data-driven methodology for airfoil generation using a diffusion model.
Trained on a dataset of preexisting airfoils, our model can generate an arbitrary number of new airfoils from random vectors.
arXiv Detail & Related papers (2024-08-28T16:12:16Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field.
We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives.
arXiv Detail & Related papers (2023-08-10T06:40:19Z) - A Synergistic Framework Leveraging Autoencoders and Generative
Adversarial Networks for the Synthesis of Computational Fluid Dynamics
Results in Aerofoil Aerodynamics [0.5018156030818882]
This study proposes a novel approach that combines autoencoders and Generative Adversarial Networks (GANs) for the purpose of generating CFD results.
Our innovative framework harnesses the intrinsic capabilities of autoencoders to encode aerofoil geometries into a compressed and informative 20-length vector representation.
conditional GAN network adeptly translates this vector into precise pressure-distribution plots, accounting for fixed wind velocity, angle of attack, and turbulence level specifications.
arXiv Detail & Related papers (2023-05-28T09:46:18Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Machine Learning to Predict Aerodynamic Stall [0.0]
A convolutional autoencoder is trained using a database of airfoil aerodynamic simulations.
The goal is to predict the stall and to investigate the ability of the autoencoder to distinguish between the linear and non-linear response of the airfoil pressure distribution.
arXiv Detail & Related papers (2022-07-07T16:50:10Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z) - Designing Air Flow with Surrogate-assisted Phenotypic Niching [117.44028458220427]
We introduce surrogate-assisted phenotypic niching, a quality diversity algorithm.
It allows to discover a large, diverse set of behaviors by using computationally expensive phenotypic features.
In this work we discover the types of air flow in a 2D fluid dynamics optimization problem.
arXiv Detail & Related papers (2021-05-10T10:45:28Z) - Airfoil Design Parameterization and Optimization using B\'ezier
Generative Adversarial Networks [9.589376389671099]
We propose a deep generative model, B'ezier-GAN, to parameterize aerodynamic designs by learning from shape variations in an existing database.
Results show that B'ezier-GAN both (1) learns smooth and realistic shape representations for a wide range of airfoils and (2) empirically accelerates optimization convergence by at least two times compared to state-of-the-art parameterization methods.
arXiv Detail & Related papers (2020-06-21T05:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.