Embeddings are all you need! Achieving High Performance Medical Image Classification through Training-Free Embedding Analysis
- URL: http://arxiv.org/abs/2412.09445v1
- Date: Thu, 12 Dec 2024 16:59:37 GMT
- Title: Embeddings are all you need! Achieving High Performance Medical Image Classification through Training-Free Embedding Analysis
- Authors: Raj Hansini Khoiwal, Alan B. McMillan,
- Abstract summary: Developing artificial intelligence (AI) and machine learning (ML) models for medical imaging typically involves extensive training and testing on large datasets.
We investigated the feasibility of replacing conventional training procedures with an embedding-based approach.
- Score: 0.0
- License:
- Abstract: Developing artificial intelligence (AI) and machine learning (ML) models for medical imaging typically involves extensive training and testing on large datasets, consuming significant computational time, energy, and resources. There is a need for more efficient methods that can achieve comparable or superior diagnostic performance without the associated resource burden. We investigated the feasibility of replacing conventional training procedures with an embedding-based approach that leverages concise and semantically meaningful representations of medical images. Using pre-trained foundational models-specifically, convolutional neural networks (CNN) like ResNet and multimodal models like Contrastive Language-Image Pre-training (CLIP)-we generated image embeddings for multi-class classification tasks. Simple linear classifiers were then applied to these embeddings. The approach was evaluated across diverse medical imaging modalities, including retinal images, mammography, dermatoscopic images, and chest radiographs. Performance was compared to benchmark models trained and tested using traditional methods. The embedding-based models surpassed the benchmark area under the receiver operating characteristic curve (AUC-ROC) scores by up to 87 percentage in multi-class classification tasks across the various medical imaging modalities. Notably, CLIP embedding models achieved the highest AUC-ROC scores, demonstrating superior classification performance while significantly reducing computational demands. Our study indicates that leveraging embeddings from pre-trained foundational models can effectively replace conventional, resource-intensive training and testing procedures in medical image analysis. This embedding-based approach offers a more efficient alternative for image segmentation, classification, and prediction, potentially accelerating AI technology integration into clinical practice.
Related papers
- Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
We organized the first international competition dedicated to promptable medical image segmentation.
The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline.
The best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption.
arXiv Detail & Related papers (2024-12-20T17:33:35Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Learned Image resizing with efficient training (LRET) facilitates
improved performance of large-scale digital histopathology image
classification models [0.0]
Histologic examination plays a crucial role in oncology research and diagnostics.
Current approaches to training deep convolutional neural networks (DCNN) result in suboptimal model performance.
We introduce a novel approach that addresses the main limitations of traditional histopathology classification model training.
arXiv Detail & Related papers (2024-01-19T23:45:47Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Pick the Best Pre-trained Model: Towards Transferability Estimation for
Medical Image Segmentation [20.03177073703528]
Transfer learning is a critical technique in training deep neural networks for the challenging medical image segmentation task.
We propose a new Transferability Estimation (TE) method for medical image segmentation.
Our method surpasses all current algorithms for transferability estimation in medical image segmentation.
arXiv Detail & Related papers (2023-07-22T01:58:18Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications.
Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples.
Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks.
arXiv Detail & Related papers (2023-06-16T01:46:07Z) - Forward-Forward Contrastive Learning [4.465144120325802]
We propose Forward Forward Contrastive Learning (FFCL) as a novel pretraining approach for medical image classification.
FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task.
arXiv Detail & Related papers (2023-05-04T15:29:06Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.