Echoes and defects in the Calogero model
- URL: http://arxiv.org/abs/2412.09488v2
- Date: Thu, 03 Jul 2025 14:15:57 GMT
- Title: Echoes and defects in the Calogero model
- Authors: Benjamin Liégeois, Ramasubramanian Chitra, Nicolò Defenu,
- Abstract summary: We study the Calogero model in a harmonic trap modulated through time.<n>We show that enhanced interactions and exclusion are shown to favor the proliferation of defects.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we extend the study of the interplay between scaling symmetries and statistics to one-dimensional fluids by studying the Calogero model in a harmonic trap modulated through time. The latter harbors an interpretation in terms of free particles imbued with exclusion statistics and is an example of a scale invariant fluid in one-dimension displaying $\mathrm{SO(2,1)}$ dynamical symmetry preserved by harmonic traps. Taking advantage of the dynamical symmetry, two experimentally relevant drive protocols spanning both quasistatic and nonadiabatic regimes are investigated and universal signatures of the interactions and exclusion statistics are uncovered in the ground-state echo amplitude and closely related ground-state fidelity. In particular, under both periodic modulation and slow drive through the gapless point of the trap frequency, enhanced interactions and exclusion are shown to favor the proliferation of defects and to hinder their annihilation, which leads to a universal decrease of ground-state fidelities and echo amplitudes. We also show that increasing exclusion sparks a sharp suppression of the likelihood of intermediate echoes beyond those imposed by the commensurability of a periodic drive and the natural frequency of the trap.
Related papers
- Persistent subradiant correlations in a random driven Dicke model [49.1574468325115]
We study theoretically the driven-dissipative dynamics of an array of two-level emitters, coupled to a single photonic mode, in the presence of disorder in the resonant frequencies.<n>We introduce the notion of subradiant correlations in the dynamics, corresponding to the eigenstates of the Liouvillian with a low decay rate, that can also oscillate in time.
arXiv Detail & Related papers (2025-07-25T17:53:56Z) - Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Generation of intraparticle quantum correlations in amplitude damping channel and its robustness [0.6291443816903801]
We study intra-particle correlations between two different degrees of freedom under various decoherence channels.
We observe a unique feature of the amplitude damping channel, wherein entanglement is shown to arise starting from separable states.
arXiv Detail & Related papers (2023-03-01T06:04:56Z) - Statics and Dynamics of non-Hermitian Many-Body Localization [0.0]
Many-body localized phases retain memory of their initial conditions in disordered interacting systems.
We focus on the interacting Hatano-Nelson model which breaks unitarity via asymmetric hopping.
Our findings suggest the possibility of an intermediate dynamical regime in disordered open systems.
arXiv Detail & Related papers (2023-01-04T18:58:17Z) - Emergent conservation in Floquet dynamics of integrable non-Hermitian
models [0.0]
We study the dynamics of a class of integrable non-Hermitian free-fermionic models driven periodically using a continuous drive protocol.
Our analysis indicates the existence of special drive frequencies at which an approximately conserved quantity emerges.
arXiv Detail & Related papers (2022-09-26T18:21:08Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Quadrature nonreciprocity: unidirectional bosonic transmission without
breaking time-reversal symmetry [0.0]
We extend the notion of nonreciprocity to unidirectional bosonic transport in systems with a time-reversal symmetric Hamiltonian.
In contrast to standard nonreciprocity, this unidirectional transport manifests when the mode quadratures are resolved with respect to an external reference phase.
Our work opens up new avenues for signal routing and quantum-limited amplification in bosonic systems.
arXiv Detail & Related papers (2022-07-18T11:37:54Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Monitored Open Fermion Dynamics: Exploring the Interplay of Measurement,
Decoherence, and Free Hamiltonian Evolution [0.0]
We investigate the impact of dephasing and the inevitable evolution into a non-Gaussian, mixed state, on the dynamics of monitored fermions.
For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust measurement-induced phase transition.
We interpret this as a signature of gapless, classical diffusion, which is stabilized by the balanced interplay of Hamiltonian dynamics, measurements, and decoherence.
arXiv Detail & Related papers (2022-02-28T19:00:13Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Distant emitters in ultrastrong waveguide QED: Ground-state properties
and non-Markovian dynamics [0.0]
We study the properties of a system of two distant two-level emitters coupled to a one-dimensional Ohmic waveguide.
We introduce non-Markovianity arising from delay-feedback effects in two distant emitters in the so-called ultrastrong coupling regime.
In particular, we revisit the Fermi two-atom problem showing that, in the USC regime, initial correlations yield two different evolutions for symmetric and antisymmetric states.
arXiv Detail & Related papers (2021-06-05T19:21:00Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.