Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems
- URL: http://arxiv.org/abs/2407.11723v1
- Date: Tue, 16 Jul 2024 13:42:38 GMT
- Title: Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems
- Authors: Chun Y. Leung, Alessandro Romito,
- Abstract summary: The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition in out-of-equilibrium steady states. Here, we consider such transitions under the addition of local random white noise and measurement inefficiency in a XX spin chain. We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations, specifically the subsystem parity variance. While the non-monotonicity persists at any finite efficiency for the operator correlations, it disappears at finite inefficiency for the entanglement. The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement. Our result hints at a difference between area-law entanglement scaling and Zeno-localized phases for inefficient monitoring.
Related papers
- Breakdown of Measurement-Induced Phase Transitions Under Information Loss [39.36827689390718]
A quantum-many body system can feature measurement-induced phase transitions (MIPTs)
MIPTs cannot be revealed through ensemble-averaged observables, but it requires the ability to discriminate each trajectory separately.
We explore the fate of MIPTs under an observer's reduced ability to discriminate each measurement outcome.
arXiv Detail & Related papers (2024-07-18T18:10:52Z) - Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems [0.0]
We show a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size.
Our findings may be relevant for tailoring quantum correlations in noisy quantum devices.
arXiv Detail & Related papers (2024-06-07T12:08:07Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Entanglement phase transitions in non-Hermitian Kitaev chains [0.0]
Loss-induced entanglement transitions are found in non-Hermitian topological superconductors.
Log-law to log-law and log-law to area-law entanglement phase transitions are identified when the system switches between different topological phases.
arXiv Detail & Related papers (2024-02-05T13:39:19Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Diagnosing entanglement dynamics in noisy and disordered spin chains via
the measurement-induced steady-state entanglement transition [0.0]
We analyze the interplay and competition of processes that generate and destroy entanglement in a one-dimensional quantum spin chain under a noisy Hamiltonian.
Our results establish a firm connection between this entanglement growth and the steady-state behavior of the measurement-controlled systems.
arXiv Detail & Related papers (2021-07-23T17:16:48Z) - Localisation determines the optimal noise rate for quantum transport [68.8204255655161]
Localisation and the optimal dephasing rate in 1D chains are studied.
A simple power law captures the interplay between size-dependent and size-independent responses.
Relationship continues to apply at intermediate and high temperature but breaks down in the low temperature limit.
arXiv Detail & Related papers (2021-06-23T17:52:16Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Measurement-Induced Entanglement Transitions in the Quantum Ising Chain:
From Infinite to Zero Clicks [0.0]
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment.
We find a remarkably similar phenomenology as the measurement strength $gamma$ is increased.
We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement.
arXiv Detail & Related papers (2021-03-16T15:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.