Foundational Large Language Models for Materials Research
- URL: http://arxiv.org/abs/2412.09560v2
- Date: Tue, 28 Jan 2025 13:17:29 GMT
- Title: Foundational Large Language Models for Materials Research
- Authors: Vaibhav Mishra, Somaditya Singh, Dhruv Ahlawat, Mohd Zaki, Vaibhav Bihani, Hargun Singh Grover, Biswajit Mishra, Santiago Miret, Mausam, N. M. Anoop Krishnan,
- Abstract summary: Large Language Models (LLMs) offer opportunities to accelerate materials research through automated analysis and prediction.
Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models.
We demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities.
- Score: 22.77591279242839
- License:
- Abstract: Materials discovery and development are critical for addressing global challenges. Yet, the exponential growth in materials science literature comprising vast amounts of textual data has created significant bottlenecks in knowledge extraction, synthesis, and scientific reasoning. Large Language Models (LLMs) offer unprecedented opportunities to accelerate materials research through automated analysis and prediction. Still, their effective deployment requires domain-specific adaptation for understanding and solving domain-relevant tasks. Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models on an extensive corpus of materials literature and crystallographic data. Through systematic evaluation, we demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities. The specialized LLaMat-CIF variant demonstrates unprecedented capabilities in crystal structure generation, predicting stable crystals with high coverage across the periodic table. Intriguingly, despite LLaMA-3's superior performance in comparison to LLaMA-2, we observe that LLaMat-2 demonstrates unexpectedly enhanced domain-specific performance across diverse materials science tasks, including structured information extraction from text and tables, more particularly in crystal structure generation, a potential adaptation rigidity in overtrained LLMs. Altogether, the present work demonstrates the effectiveness of domain adaptation towards developing practically deployable LLM copilots for materials research. Beyond materials science, our findings reveal important considerations for domain adaptation of LLMs, such as model selection, training methodology, and domain-specific performance, which may influence the development of specialized scientific AI systems.
Related papers
- MatterChat: A Multi-Modal LLM for Material Science [40.34536331137755]
We introduce MatterChat, a versatile structure-aware multi-modal large language model.
We show that MatterChat significantly improves performance in material property prediction and human-AI interaction.
We also demonstrate its usefulness in applications such as more advanced scientific reasoning and step-by-step material synthesis.
arXiv Detail & Related papers (2025-02-18T18:19:36Z) - DARWIN 1.5: Large Language Models as Materials Science Adapted Learners [46.7259033847682]
We propose DARWIN 1.5, the largest open-source large language model tailored for materials science.
DARWIN eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery.
Our approach integrates 6M material domain papers and 21 experimental datasets from 49,256 materials across modalities while enabling cross-task knowledge transfer.
arXiv Detail & Related papers (2024-12-16T16:51:27Z) - Evaluating the Performance and Robustness of LLMs in Materials Science Q&A and Property Predictions [1.2696732407979383]
Large Language Models (LLMs) have the potential to revolutionize scientific research, yet their robustness and reliability in domain-specific applications remain insufficiently explored.
This study conducts a comprehensive evaluation and robustness analysis of LLMs within the field of materials science.
arXiv Detail & Related papers (2024-09-22T19:31:16Z) - Enhancing Large Language Models with Domain-Specific Knowledge: The Case in Topological Materials [4.654635844923322]
Large language models (LLMs) have demonstrated impressive performance in the text generation task.
We develop a specialized dialogue system for topological materials called TopoChat.
TopoChat exhibits superior performance in structural and property querying, material recommendation, and complex relational reasoning.
arXiv Detail & Related papers (2024-09-10T06:01:16Z) - From Text to Insight: Large Language Models for Materials Science Data Extraction [4.08853418443192]
The vast majority of materials science knowledge exists in unstructured natural language.
Structured data is crucial for innovative and systematic materials design.
The advent of large language models (LLMs) represents a significant shift.
arXiv Detail & Related papers (2024-07-23T22:23:47Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Materials Informatics Transformer: A Language Model for Interpretable
Materials Properties Prediction [6.349503549199403]
We introduce our model Materials Informatics Transformer (MatInFormer) for material property prediction.
Specifically, we introduce a novel approach that involves learning the grammar of crystallography through the tokenization of pertinent space group information.
arXiv Detail & Related papers (2023-08-30T18:34:55Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
arXiv Detail & Related papers (2023-07-20T07:01:57Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.