Causal Discovery from Data Assisted by Large Language Models
- URL: http://arxiv.org/abs/2503.13833v1
- Date: Tue, 18 Mar 2025 02:14:49 GMT
- Title: Causal Discovery from Data Assisted by Large Language Models
- Authors: Kamyar Barakati, Alexander Molak, Chris Nelson, Xiaohang Zhang, Ichiro Takeuchi, Sergei V. Kalinin,
- Abstract summary: It is essential to integrate experimental data with prior domain knowledge for knowledge driven discovery.<n>Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs)<n>By fine-tuning ChatGPT on domain-specific literature, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO)
- Score: 50.193740129296245
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Knowledge driven discovery of novel materials necessitates the development of the causal models for the property emergence. While in classical physical paradigm the causal relationships are deduced based on the physical principles or via experiment, rapid accumulation of observational data necessitates learning causal relationships between dissimilar aspects of materials structure and functionalities based on observations. For this, it is essential to integrate experimental data with prior domain knowledge. Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs). By fine-tuning ChatGPT on domain-specific literature, such as arXiv papers on ferroelectrics, and combining obtained information with data-driven causal discovery, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO). This approach enables us to hypothesize how synthesis conditions influence material properties, particularly the coercive field (E0), and guides experimental validation. The ultimate objective of this work is to develop a unified framework that integrates LLM-driven literature analysis with data-driven discovery, facilitating the precise engineering of ferroelectric materials by establishing clear connections between synthesis conditions and their resulting material properties.
Related papers
- Statistical learning of structure-property relationships for transport in porous media, using hybrid AI modeling [0.0]
The 3D microstructure of porous media significantly impacts the resulting macroscopic properties, including effective diffusivity or permeability.
quantitative structure-property relationships are crucial for further optimizing the performance of porous media.
The present paper uses 90,000 virtually generated 3D microstructures of porous media derived from literature.
The paper extends these findings by applying a hybrid AI framework to this data set.
arXiv Detail & Related papers (2025-03-27T14:46:40Z) - Materials Map Integrating Experimental and Computational Data through Graph-Based Machine Learning for Enhanced Materials Discovery [5.06756291053173]
Materials informatics (MI) is expected to greatly streamline material discovery and development.<n>Data used for MI are obtained from both computational and experimental studies.<n>In this study, we use the obtained data to construct materials maps, which visualize the relation in the structural features of materials.
arXiv Detail & Related papers (2025-03-10T14:31:34Z) - SPIN: SE(3)-Invariant Physics Informed Network for Binding Affinity Prediction [3.406882192023597]
Accurate prediction of protein-ligand binding affinity is crucial for drug development.
Traditional methods often fail to accurately model the complex's spatial information.
We propose SPIN, a model that incorporates various inductive biases applicable to this task.
arXiv Detail & Related papers (2024-07-10T08:40:07Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
This paper presents Causal representatiOn AssistanT (COAT) that introduces large language models (LLMs) to bridge the gap.
LLMs are trained on massive observations of the world and have demonstrated great capability in extracting key information from unstructured data.
COAT also adopts CDs to find causal relations among the identified variables as well as to provide feedback to LLMs to iteratively refine the proposed factors.
arXiv Detail & Related papers (2024-02-06T12:18:54Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Modeling Dislocation Dynamics Data Using Semantic Web Technologies [0.0]
An important class of materials that is widely investigated are crystalline materials, including metals and semiconductors.
Dislocation affects various material properties, including strength, fracture, and ductility.
This paper presents how data from dislocation dynamics simulations can be modeled using web technologies.
arXiv Detail & Related papers (2023-09-13T13:03:44Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
Machine learning (ML)-accelerated discovery requires large amounts of high-fidelity data to reveal predictive structure-property relationships.
For many properties of interest in materials discovery, the challenging nature and high cost of data generation has resulted in a data landscape that is scarcely populated and of dubious quality.
In the absence of manual curation, increasingly sophisticated natural language processing and automated image analysis are making it possible to learn structure-property relationships from the literature.
arXiv Detail & Related papers (2021-11-02T21:43:58Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.