論文の概要: DiverseAgentEntropy: Quantifying Black-Box LLM Uncertainty through Diverse Perspectives and Multi-Agent Interaction
- arxiv url: http://arxiv.org/abs/2412.09572v1
- Date: Thu, 12 Dec 2024 18:52:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:33:03.221048
- Title: DiverseAgentEntropy: Quantifying Black-Box LLM Uncertainty through Diverse Perspectives and Multi-Agent Interaction
- Title(参考訳): ディバースエージェントエントロピー: ディバースパースペクティブとマルチエージェントインタラクションによるブラックボックスLDM不確かさの定量化
- Authors: Yu Feng, Phu Mon Htut, Zheng Qi, Wei Xiao, Manuel Mager, Nikolaos Pappas, Kishaloy Halder, Yang Li, Yassine Benajiba, Dan Roth,
- Abstract要約: モデルの不確実性を評価する既存の手法は、元のクエリに対する自己整合性を評価することで、必ずしも真の不確実性を把握するわけではない。
マルチエージェントインタラクションを用いたモデルの不確実性評価のための新しい手法であるDiverseAgentEntropyを提案する。
提案手法は,モデルの信頼性をより正確に予測し,さらに幻覚を検知し,他の自己整合性に基づく手法よりも優れる。
- 参考スコア(独自算出の注目度): 53.803276766404494
- License:
- Abstract: Quantifying the uncertainty in the factual parametric knowledge of Large Language Models (LLMs), especially in a black-box setting, poses a significant challenge. Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the original query, do not always capture true uncertainty. Models might respond consistently to the origin query with a wrong answer, yet respond correctly to varied questions from different perspectives about the same query, and vice versa. In this paper, we propose a novel method, DiverseAgentEntropy, for evaluating a model's uncertainty using multi-agent interaction under the assumption that if a model is certain, it should consistently recall the answer to the original query across a diverse collection of questions about the same original query. We further implement an abstention policy to withhold responses when uncertainty is high. Our method offers a more accurate prediction of the model's reliability and further detects hallucinations, outperforming other self-consistency-based methods. Additionally, it demonstrates that existing models often fail to consistently retrieve the correct answer to the same query under diverse varied questions even when knowing the correct answer.
- Abstract(参考訳): 大規模言語モデル(LLM)の実際のパラメトリック知識の不確実性を定量化することは、特にブラックボックスの設定において大きな課題となる。
モデルの不確実性を評価する既存の手法は、元のクエリに対する自己整合性を評価することで、必ずしも真の不確実性を把握するわけではない。
モデルは、間違った回答でオリジンクエリに一貫して応答するが、同じクエリに関して異なる視点から様々な質問に正しく応答する。
本稿では,モデルが確実な場合,同一のクエリに関する多様な質問の集合にまたがって,元のクエリに対する応答を常にリコールする,という仮定の下で,マルチエージェントインタラクションを用いたモデルの不確実性を評価する手法であるDiverseAgentEntropyを提案する。
我々はまた、不確実性が高い場合に応答を抑えるための棄権政策を実践する。
提案手法は,モデルの信頼性をより正確に予測し,さらに幻覚を検知し,他の自己整合性に基づく手法よりも優れる。
さらに、既存のモデルでは、正しい答えを知っていても、様々な質問で同じ質問に対する正しい回答を常に取り出すことができないこともしばしば示している。
関連論文リスト
- Variability Need Not Imply Error: The Case of Adequate but Semantically Distinct Responses [7.581259361859477]
不確実性定量化ツールは、モデルが不確実である場合の応答を拒否するために使用できます。
我々は、モデルがAdequate Responses (PROBAR)に割り当てる確率を推定する。
ProBARはアンビグニティ/オープンエンディエントネスの異なるプロンプトでセマンティックエントロピーを上回ります。
論文 参考訳(メタデータ) (2024-12-20T09:02:26Z) - Testing Uncertainty of Large Language Models for Physics Knowledge and Reasoning [0.0]
大規模言語モデル(LLM)は、近年、様々な分野の質問に答える能力で大きな人気を集めている。
本稿では,オープンソースLLMの性能評価のための解析手法を提案する。
我々は,物理に関する話題における解答精度と変数の関係に注目した。
論文 参考訳(メタデータ) (2024-11-18T13:42:13Z) - Uncertainty Estimation of Large Language Models in Medical Question Answering [60.72223137560633]
大規模言語モデル(LLM)は、医療における自然言語生成の約束を示すが、事実的に誤った情報を幻覚させるリスクがある。
医学的問合せデータセットのモデルサイズが異なる人気不確実性推定(UE)手法をベンチマークする。
以上の結果から,本領域における現在のアプローチは,医療応用におけるUEの課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-07-11T16:51:33Z) - Uncertainty-aware Language Modeling for Selective Question Answering [107.47864420630923]
本稿では,不確実性を考慮したLLMを生成するLLM変換手法を提案する。
我々のアプローチはモデルとデータに依存しず、計算効率が高く、外部モデルやシステムに依存しない。
論文 参考訳(メタデータ) (2023-11-26T22:47:54Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z) - Realistic Conversational Question Answering with Answer Selection based
on Calibrated Confidence and Uncertainty Measurement [54.55643652781891]
対話型質問回答モデル(ConvQA)は,会話中に複数回発生した質問文と過去の質問文のペアを用いて質問に回答することを目的としている。
本稿では,会話履歴における不正確な回答を,ConvQAモデルから推定された信頼度と不確実性に基づいてフィルタリングすることを提案する。
我々は2つの標準ConvQAデータセット上で、回答選択に基づくリアルな会話質問回答モデルの有効性を検証する。
論文 参考訳(メタデータ) (2023-02-10T09:42:07Z) - Composed Image Retrieval with Text Feedback via Multi-grained
Uncertainty Regularization [73.04187954213471]
粗い検索ときめ細かい検索を同時にモデル化する統合学習手法を提案する。
提案手法は、強いベースラインに対して+4.03%、+3.38%、+2.40%のRecall@50精度を達成した。
論文 参考訳(メタデータ) (2022-11-14T14:25:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。