Neural LightRig: Unlocking Accurate Object Normal and Material Estimation with Multi-Light Diffusion
- URL: http://arxiv.org/abs/2412.09593v1
- Date: Thu, 12 Dec 2024 18:58:09 GMT
- Title: Neural LightRig: Unlocking Accurate Object Normal and Material Estimation with Multi-Light Diffusion
- Authors: Zexin He, Tengfei Wang, Xin Huang, Xingang Pan, Ziwei Liu,
- Abstract summary: We present a novel framework that boosts intrinsic estimation by leveraging auxiliary multi-lighting conditions from 2D diffusion priors.
We train a large G-buffer model with a U-Net backbone to accurately predict surface normals and materials.
- Score: 45.81230812844384
- License:
- Abstract: Recovering the geometry and materials of objects from a single image is challenging due to its under-constrained nature. In this paper, we present Neural LightRig, a novel framework that boosts intrinsic estimation by leveraging auxiliary multi-lighting conditions from 2D diffusion priors. Specifically, 1) we first leverage illumination priors from large-scale diffusion models to build our multi-light diffusion model on a synthetic relighting dataset with dedicated designs. This diffusion model generates multiple consistent images, each illuminated by point light sources in different directions. 2) By using these varied lighting images to reduce estimation uncertainty, we train a large G-buffer model with a U-Net backbone to accurately predict surface normals and materials. Extensive experiments validate that our approach significantly outperforms state-of-the-art methods, enabling accurate surface normal and PBR material estimation with vivid relighting effects. Code and dataset are available on our project page at https://projects.zxhezexin.com/neural-lightrig.
Related papers
- IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.
Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.
We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - RelitLRM: Generative Relightable Radiance for Large Reconstruction Models [52.672706620003765]
We propose RelitLRM for generating high-quality Gaussian splatting representations of 3D objects under novel illuminations.
Unlike prior inverse rendering methods requiring dense captures and slow optimization, RelitLRM adopts a feed-forward transformer-based model.
We show our sparse-view feed-forward RelitLRM offers competitive relighting results to state-of-the-art dense-view optimization-based baselines.
arXiv Detail & Related papers (2024-10-08T17:40:01Z) - A Diffusion Approach to Radiance Field Relighting using Multi-Illumination Synthesis [6.883971329818549]
We introduce a method to create relightable radiance fields using single-illumination data.
We first fine-tune a 2D diffusion model on a multi-illumination dataset conditioned by light direction.
We show results on synthetic and real multi-view data under single illumination.
arXiv Detail & Related papers (2024-09-13T16:07:25Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
This paper aims to recover object materials from posed images captured under an unknown static lighting condition.
We learn the material prior with a generative model for regularizing the optimization process.
Experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery.
arXiv Detail & Related papers (2024-04-17T17:45:08Z) - NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
Multi-view inverse rendering is the problem of estimating the scene parameters such as shapes, materials, or illuminations from a sequence of images captured under different viewpoints.
We propose Neural Incident Stokes Fields (NeISF), a multi-view inverse framework that reduces ambiguities using polarization cues.
arXiv Detail & Related papers (2023-11-22T06:28:30Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
We present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image.
In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent estimation.
arXiv Detail & Related papers (2023-05-10T11:57:49Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - NeILF: Neural Incident Light Field for Physically-based Material
Estimation [31.230609753253713]
We present a differentiable rendering framework for material and lighting estimation from multi-view images and a reconstructed geometry.
In the framework, we represent scene lightings as the Neural Incident Light Field (NeILF) and material properties as the surface BRDF modelled by multi-layer perceptrons.
arXiv Detail & Related papers (2022-03-14T15:23:04Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.