論文の概要: Assisted morbidity coding: the SISCO.web use case for identifying the main diagnosis in Hospital Discharge Records
- arxiv url: http://arxiv.org/abs/2412.09651v1
- Date: Wed, 11 Dec 2024 16:08:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:07.876564
- Title: Assisted morbidity coding: the SISCO.web use case for identifying the main diagnosis in Hospital Discharge Records
- Title(参考訳): Assisted morbidity coding: the SISCO.web use case for identify the main diagnosis in Hospital discharge Records
- Authors: Elena Cardillo, Lucilla Frattura,
- Abstract要約: 本論文は, 病院退院記録に適切な診断・手続きコードで記入する医師を支援するためのSISCO.webアプローチを提案することを目的とする。
このWebサービスは、NLPアルゴリズム、特定のコーディングルール、およびアドホック決定ツリーを活用して、主条件を特定する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Coding morbidity data using international standard diagnostic classifications is increasingly important and still challenging. Clinical coders and physicians assign codes to patient episodes based on their interpretation of case notes or electronic patient records. Therefore, accurate coding relies on the legibility of case notes and the coders' understanding of medical terminology. During the last ten years, many studies have shown poor reproducibility of clinical coding, even recently, with the application of Artificial Intelligence-based models. Given this context, the paper aims to present the SISCO.web approach designed to support physicians in filling in Hospital Discharge Records with proper diagnoses and procedures codes using the International Classification of Diseases (9th and 10th), and, above all, in identifying the main pathological condition. The web service leverages NLP algorithms, specific coding rules, as well as ad hoc decision trees to identify the main condition, showing promising results in providing accurate ICD coding suggestions.
- Abstract(参考訳): 国際標準診断分類を用いたモルビディティデータの符号化はますます重要で、なお困難である。
臨床コーダーと医師は、ケースノートや電子的患者の記録の解釈に基づいて、患者のエピソードにコードを割り当てる。
したがって、正確なコーディングは、ケースノートの正当性と、コーダーによる医療用語の理解に依存している。
過去10年間、多くの研究が、人工知能ベースのモデルの適用により、臨床コーディングの再現性が劣っていることを示してきた。
本研究の目的は,国際疾患分類(第9,第10回)を用いた適切な診断・手順コードを用いて,病院退院記録に記入する医師を支援するためのSISCO.webアプローチを提案することである。
Webサービスは、NLPアルゴリズム、特定のコーディングルール、およびアドホック決定ツリーを活用して、主要な状態を特定し、正確なICDコーディング提案を提供する有望な結果を示す。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
3つのアイデアを取り入れた新しいICDインデクシング手法を提案する。
臨床ノートから情報を収集するために,多レベル深部拡張残差畳み込みエンコーダを用いた。
我々はICD分類の課題を医療記録の補助的知識で定式化する。
論文 参考訳(メタデータ) (2024-05-29T13:44:07Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
我々は,ICDコード表現の学習を促進するために,文脈的かつ柔軟なフレームワークである新しい手法を提案する。
提案手法では,可能なすべてのコード関係をモデル化する際の臨床ノートのコンテキストを考慮した,依存型学習パラダイムを採用している。
論文 参考訳(メタデータ) (2024-02-24T03:25:28Z) - Automated clinical coding using off-the-shelf large language models [10.365958121087305]
診断用ICD符号を患者病院入院に割り当てる作業は、典型的には、熟練した人間のコーダーによって行われる。
自動ICD符号化への取り組みは、教師付きディープラーニングモデルによって支配されている。
本研究では,既製の事前学習型大規模言語モデルを活用し,実用的ソリューションを開発する。
論文 参考訳(メタデータ) (2023-10-10T11:56:48Z) - Automatic Coding at Scale: Design and Deployment of a Nationwide System
for Normalizing Referrals in the Chilean Public Healthcare System [0.0]
本稿では,チリの公共医療システムからの紹介で,疾患を自動的にコードする2段階のシステムを提案する。
具体的には,病名認識のための最新のNERモデルと,これらの疾患名に関連付けられた最も関連性の高いコードを割り当てるための検索エンジンシステムを用いている。
本システムでは,カテゴリレベルのMAPスコアが0.63,カテゴリレベルの0.83を得た。
論文 参考訳(メタデータ) (2023-07-09T16:19:35Z) - Medical Codes Prediction from Clinical Notes: From Human Coders to
Machines [0.21320960069210473]
臨床ノートから医療コードを予測することは、すべての医療提供組織にとって実用的で不可欠である。
最大の課題は、構造化されていないフリーテキスト臨床ノートから数千の高次元コードから適切な医療コードを直接識別することである。
最近の研究では、本格的なディープラーニングベースの手法による最先端のコード予測結果が示されている。
論文 参考訳(メタデータ) (2022-10-30T14:24:13Z) - Can Current Explainability Help Provide References in Clinical Notes to
Support Humans Annotate Medical Codes? [53.45585591262433]
本稿では、注意スコアに基づくxRAC-ATTNと、モデルに依存しない知識蒸留に基づくxRAC-KDの2つのアプローチについて説明する。
我々は,xRAC-ATTNが強調した支持エビデンステキストが,xRAC-KDよりも高品質であるのに対して,xRAC-KDは本番環境において潜在的に有利であることを示した。
論文 参考訳(メタデータ) (2022-10-28T04:06:07Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
文脈単語埋め込みモデルは、複数のNLPタスクにおいて最先端の結果を得た。
ICDBigBirdは、Graph Convolutional Network(GCN)を統合するBigBirdベースのモデルである。
ICD分類作業におけるBigBirdモデルの有効性を実世界の臨床データセットで実証した。
論文 参考訳(メタデータ) (2022-04-21T20:59:56Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
国際疾患分類法 (ICD) は, 医療分野の請求システムにおいて有効かつ重要であることが示されている。
現在、ICDコードは手動で臨床メモに割り当てられており、多くのエラーを引き起こす可能性がある。
本稿では,文書のトークン間の相互依存を捉えるためにトランスフォーマーベースのアーキテクチャを適用し,コードワイド・アテンション・メカニズムを用いて文書全体のコード固有表現を学習する。
論文 参考訳(メタデータ) (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。