論文の概要: From Noise to Nuance: Advances in Deep Generative Image Models
- arxiv url: http://arxiv.org/abs/2412.09656v1
- Date: Thu, 12 Dec 2024 02:09:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:04:01.939067
- Title: From Noise to Nuance: Advances in Deep Generative Image Models
- Title(参考訳): ノイズからニュアンスへ:深部生成画像モデルの発展
- Authors: Benji Peng, Chia Xin Liang, Ziqian Bi, Ming Liu, Yichao Zhang, Tianyang Wang, Keyu Chen, Xinyuan Song, Pohsun Feng,
- Abstract要約: ディープラーニングに基づく画像生成は、2021年以来パラダイムシフトを続けてきた。
安定拡散, DALL-E, 一貫性モデルの最近の進歩は, 画像合成の能力と性能の境界を再定義している。
マルチモーダル理解とゼロショット生成能力の強化が,産業全体にわたる実践的応用をいかに変えつつあるかを検討する。
- 参考スコア(独自算出の注目度): 8.802499769896192
- License:
- Abstract: Deep learning-based image generation has undergone a paradigm shift since 2021, marked by fundamental architectural breakthroughs and computational innovations. Through reviewing architectural innovations and empirical results, this paper analyzes the transition from traditional generative methods to advanced architectures, with focus on compute-efficient diffusion models and vision transformer architectures. We examine how recent developments in Stable Diffusion, DALL-E, and consistency models have redefined the capabilities and performance boundaries of image synthesis, while addressing persistent challenges in efficiency and quality. Our analysis focuses on the evolution of latent space representations, cross-attention mechanisms, and parameter-efficient training methodologies that enable accelerated inference under resource constraints. While more efficient training methods enable faster inference, advanced control mechanisms like ControlNet and regional attention systems have simultaneously improved generation precision and content customization. We investigate how enhanced multi-modal understanding and zero-shot generation capabilities are reshaping practical applications across industries. Our analysis demonstrates that despite remarkable advances in generation quality and computational efficiency, critical challenges remain in developing resource-conscious architectures and interpretable generation systems for industrial applications. The paper concludes by mapping promising research directions, including neural architecture optimization and explainable generation frameworks.
- Abstract(参考訳): ディープラーニングに基づく画像生成は、2021年以来パラダイムシフトを経験しており、基本的なアーキテクチャのブレークスルーと計算革新が特徴である。
アーキテクチャの革新と実証結果のレビューを通じて,従来の生成手法から高度なアーキテクチャへの移行を解析し,計算効率のよい拡散モデルとビジョントランスフォーマーアーキテクチャに焦点をあてる。
安定拡散, DALL-E, 一貫性モデルにおける最近の発展は, 画像合成の能力と性能の境界を再定義し, 効率と品質の持続的課題に対処している。
本分析は,資源制約下での高速化推論を可能にする潜在空間表現,クロスアテンション機構,パラメータ効率の訓練手法の進化に着目した。
より効率的なトレーニング手法はより高速な推論を可能にするが、コントロールネットや地域アテンションシステムのような高度な制御機構は、生成精度とコンテンツのカスタマイズを同時に改善した。
マルチモーダル理解とゼロショット生成能力の強化が,産業全体にわたる実践的応用をいかに変えつつあるかを検討する。
我々の分析は、生成品質と計算効率が著しく向上したにもかかわらず、資源を意識したアーキテクチャや産業アプリケーションのための解釈可能な生成システムを開発する上で重要な課題が残っていることを示している。
この論文は、ニューラルアーキテクチャ最適化や説明可能な生成フレームワークを含む、有望な研究方向性をマッピングすることによって結論付ける。
関連論文リスト
- Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning [13.076087281398813]
提案手法は,知識保持と推論精度の観点から,既存の主流比較モデルよりも優れている。
実験の結果,提案手法は知識保持と推論精度の観点から,既存の主流比較モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-01-13T05:16:14Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Boosting CNN-based Handwriting Recognition Systems with Learnable Relaxation Labeling [48.78361527873024]
本稿では,2つの異なる手法の強みを組み込んだ手書き文字認識手法を提案する。
本稿では,アルゴリズムの収束を加速し,システム全体の性能を向上させるスペーシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2024-09-09T15:12:28Z) - Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology [2.368662284133926]
Digital Twin技術は、物理的オブジェクト、プロセス、システムの仮想レプリカを作成し、それらの特性、データ、振る舞いを複製する。
Digital Twin技術は、大規模複雑なセンサーネットワークにおけるグラフ予測技術を活用し、多様なシナリオの正確な予測とシミュレーションを可能にしている。
本稿では,新しいパターンへの高速適応と過去の知識のメモリベース検索を取り入れ,ハイパーグラフ表現学習のバックボーンを強化するハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-08-22T14:08:45Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Interpretable learning of effective dynamics for multiscale systems [5.754251195342313]
iLED(Interpretable Learning Effective Dynamics)の新たな枠組みを提案する。
iLEDは、最先端のリカレントニューラルネットワークベースのアプローチに匹敵する精度を提供する。
その結果、iLEDフレームワークは正確な予測を生成でき、解釈可能なダイナミクスを得ることができることがわかった。
論文 参考訳(メタデータ) (2023-09-11T20:29:38Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
本稿では、ネットワークアーキテクチャとそのパラメータを自動化とともに最適化し、トレーニング中にGANを動的に成長させる手法を提案する。
本手法はアーキテクチャ探索手法を勾配に基づく訓練とインターリーブステップとして組み込んで,ジェネレータと識別器の最適アーキテクチャ成長戦略を定期的に探究する。
論文 参考訳(メタデータ) (2021-06-16T01:25:51Z) - Bottom-up and top-down approaches for the design of neuromorphic
processing systems: Tradeoffs and synergies between natural and artificial
intelligence [3.874729481138221]
ムーアの法則は指数計算能力の期待を加速させており、システム全体の性能を改善するための新たな方法を求める最終段階に近づいている。
これらの方法の1つは、生物学的ニューラルネットワークシステムの柔軟性と計算効率を達成することを目的とした、脳にインスパイアされた代替コンピューティングアーキテクチャの探索である。
我々は、このパラダイムシフトが実現される際の粒度の異なるレベルについて、その分野の包括的概要を提供する。
論文 参考訳(メタデータ) (2021-06-02T16:51:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。