Bad Crypto: Chessography and Weak Randomness of Chess Games
- URL: http://arxiv.org/abs/2412.09742v1
- Date: Thu, 12 Dec 2024 22:17:56 GMT
- Title: Bad Crypto: Chessography and Weak Randomness of Chess Games
- Authors: Martin Stanek,
- Abstract summary: Chessography encryption scheme is incorrect, redundant, and the the security claims based on the complexity of chess games are unjustified.
It also demonstrates an insufficient randomness in the final chess game positions, which could be of separate interest.
- Score: 0.0
- License:
- Abstract: This short communication shows that the Chessography encryption scheme is incorrect, redundant, and the the security claims based on the complexity of chess games are unjustified. It also demonstrates an insufficient randomness in the final chess game positions, which could be of separate interest.
Related papers
- Explore the Reasoning Capability of LLMs in the Chess Testbed [45.12891789312405]
We propose improving the reasoning capability of large language models in chess by integrating annotated strategy and tactic.
We finetune the LLaMA-3-8B model and compare it against state-of-the-art commercial language models in the task of selecting better chess moves.
arXiv Detail & Related papers (2024-11-11T01:42:56Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Predicting Chess Puzzle Difficulty with Transformers [0.0]
We present GlickFormer, a novel transformer-based architecture that predicts chess puzzle difficulty by approximating the Glicko-2 rating system.
The proposed model utilizes a modified ChessFormer backbone for spatial feature extraction and incorporates temporal information via factorized transformer techniques.
Results demonstrate GlickFormer's superior performance compared to the state-of-the-art ChessFormer baseline across multiple metrics.
arXiv Detail & Related papers (2024-10-14T20:39:02Z) - Hardness of Independent Learning and Sparse Equilibrium Computation in
Markov Games [70.19141208203227]
We consider the problem of decentralized multi-agent reinforcement learning in Markov games.
We show that no algorithm attains no-regret in general-sum games when executed independently by all players.
We show that our lower bounds hold even for seemingly easier setting in which all agents are controlled by a centralized algorithm.
arXiv Detail & Related papers (2023-03-22T03:28:12Z) - Abstracting Imperfect Information Away from Two-Player Zero-Sum Games [85.27865680662973]
Nayyar et al. (2013) showed that imperfect information can be abstracted away from common-payoff games by having players publicly announce their policies as they play.
This work shows that certain regularized equilibria do not possess the aforementioned non-correspondence problem.
Because these regularized equilibria can be made arbitrarily close to Nash equilibria, our result opens the door to a new perspective to solving two-player zero-sum games.
arXiv Detail & Related papers (2023-01-22T16:54:06Z) - Intransitively winning chess players positions [91.3755431537592]
The space of relations between winningness of positions of chess players is non-Euclidean.
The Zermelo-von Neumann theorem is complemented by statements about possibility vs. impossibility of building pure winning strategies.
arXiv Detail & Related papers (2022-12-11T05:55:05Z) - Predicting Winning Regions in Parity Games via Graph Neural Networks
(Extended Abstract) [68.8204255655161]
We present an incomplete-time approach to determining the winning regions of parity games via graph neural networks.
It correctly determines the winning regions of $$60% of the games in our data set and only incurs minor errors in the remaining ones.
arXiv Detail & Related papers (2022-10-18T15:10:25Z) - On the complexity of Dark Chinese Chess [5.019685897194575]
Dark Chinese chess combines some of the most complicated aspects of board and card games.
This paper provides a complexity analysis for the game of dark Chinese chess.
arXiv Detail & Related papers (2021-12-06T13:08:53Z) - Measuring the Non-Transitivity in Chess [19.618609913302855]
We quantify the non-transitivity in Chess through real-world data from human players.
There exists a strong connection between the degree of non-transitivity and the progression of a Chess player's rating.
arXiv Detail & Related papers (2021-10-22T12:15:42Z) - Chess2vec: Learning Vector Representations for Chess [0.0]
We generate and evaluate vector representations for chess pieces.
We uncover the latent structure of chess pieces and moves, as well as predict chess moves from chess positions.
arXiv Detail & Related papers (2020-11-02T14:50:48Z) - Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets
in Chess [5.3524101179510595]
We use AlphaZero to creatively explore and design new chess variants.
We compare nine other variants that involve atomic changes to the rules of chess.
By learning near-optimal strategies for each variant with AlphaZero, we determine what games between strong human players might look like if these variants were adopted.
arXiv Detail & Related papers (2020-09-09T15:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.