A Differentiable Wave Optics Model for End-to-End Computational Imaging System Optimization
- URL: http://arxiv.org/abs/2412.09774v1
- Date: Fri, 13 Dec 2024 00:57:47 GMT
- Title: A Differentiable Wave Optics Model for End-to-End Computational Imaging System Optimization
- Authors: Chi-Jui Ho, Yash Belhe, Steve Rotenberg, Ravi Ramamoorthi, Tzu-Mao Li, Nicholas Antipa,
- Abstract summary: End-to-end optimization has emerged as a powerful data-driven method for computational imaging system design.
It is challenging to model both aberration and diffraction in light transport for end-to-end optimization of compound optics.
We propose a differentiable optics simulator that efficiently models both aberration and diffraction for compound optics.
- Score: 19.83939112821776
- License:
- Abstract: End-to-end optimization, which simultaneously optimizes optics and algorithms, has emerged as a powerful data-driven method for computational imaging system design. This method achieves joint optimization through backpropagation by incorporating differentiable optics simulators to generate measurements and algorithms to extract information from measurements. However, due to high computational costs, it is challenging to model both aberration and diffraction in light transport for end-to-end optimization of compound optics. Therefore, most existing methods compromise physical accuracy by neglecting wave optics effects or off-axis aberrations, which raises concerns about the robustness of the resulting designs. In this paper, we propose a differentiable optics simulator that efficiently models both aberration and diffraction for compound optics. Using the simulator, we conduct end-to-end optimization on scene reconstruction and classification. Experimental results demonstrate that both lenses and algorithms adopt different configurations depending on whether wave optics is modeled. We also show that systems optimized without wave optics suffer from performance degradation when wave optics effects are introduced during testing. These findings underscore the importance of accurate wave optics modeling in optimizing imaging systems for robust, high-performance applications.
Related papers
- Tolerance-Aware Deep Optics [15.445359232123133]
Deep optics has emerged as a promising approach by co-designing optical elements with deep learning algorithms.
We present the first end-to-end tolerance-aware optimization framework that incorporates multiple tolerance types into the deep optics design pipeline.
Our method combines physics-informed modelling with data-driven training to enhance optical design by accounting for and compensating for structural deviations in manufacturing and assembly.
arXiv Detail & Related papers (2025-02-07T07:42:25Z) - Successive optimization of optics and post-processing with differentiable coherent PSF operator and field information [9.527960631238173]
We introduce a precise optical simulation model, and every operation in pipeline is differentiable.
To efficiently address various degradation, we design a joint optimization procedure that leverages field information.
arXiv Detail & Related papers (2024-12-19T07:49:40Z) - End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model [18.183342315517244]
We propose a new hybrid ray-tracing and wave-propagation (ray-wave) model for accurate simulation of both optical aberrations and diffractive phase modulation.
The proposed ray-wave model is fully differentiable, enabling gradient back-propagation for end-to-end co-design of refractive-diffractive lens optimization and the image reconstruction network.
arXiv Detail & Related papers (2024-06-02T18:48:22Z) - Spatial super-resolution in nanosensing with blinking emitters [79.16635054977068]
We propose a method of spatial resolution enhancement in metrology with blinking fluorescent nanosensors.
We believe that blinking fluorescent sensing agents being complemented with the developed image analysis technique could be utilized routinely in the life science sector.
arXiv Detail & Related papers (2024-02-27T10:38:05Z) - Revealing the preference for correcting separated aberrations in joint
optic-image design [19.852225245159598]
We characterize the optics with separated aberrations to achieve efficient joint design of complex systems such as smartphones and drones.
An image simulation system is presented to reproduce the genuine imaging procedure of lenses with large field-of-views.
Experiments reveal that the preference for correcting separated aberrations in joint design is as follows: longitudinal chromatic aberration, lateral chromatic aberration, spherical aberration, field curvature, and coma, with astigmatism coming last.
arXiv Detail & Related papers (2023-09-08T14:12:03Z) - Computational Optics for Mobile Terminals in Mass Production [17.413494778377565]
We construct the perturbed lens system model to illustrate the relationship between the system parameters and the deviated frequency response measured from photographs.
An optimization framework is proposed based on this model to build proxy cameras from the machining samples' SFRs.
Engaging with the proxy cameras, we synthetic data pairs, which encode the optical aberrations and the random manufacturing biases, for training the aberration-based algorithms.
arXiv Detail & Related papers (2023-05-10T04:17:33Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Generic Lithography Modeling with Dual-band Optics-Inspired Neural
Networks [52.200624127512874]
We introduce a dual-band optics-inspired neural network design that considers the optical physics underlying lithography.
Our approach yields the first published via/metal layer contour simulation at 1nm2/pixel resolution with any tile size.
We also achieve 85X simulation speedup over traditional lithography simulator with 1% accuracy loss.
arXiv Detail & Related papers (2022-03-12T08:08:50Z) - Differentiable Rendering with Perturbed Optimizers [85.66675707599782]
Reasoning about 3D scenes from their 2D image projections is one of the core problems in computer vision.
Our work highlights the link between some well-known differentiable formulations and randomly smoothed renderings.
We apply our method to 3D scene reconstruction and demonstrate its advantages on the tasks of 6D pose estimation and 3D mesh reconstruction.
arXiv Detail & Related papers (2021-10-18T08:56:23Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.