Federated Learning of Dynamic Bayesian Network via Continuous Optimization from Time Series Data
- URL: http://arxiv.org/abs/2412.09814v2
- Date: Wed, 05 Feb 2025 19:35:48 GMT
- Title: Federated Learning of Dynamic Bayesian Network via Continuous Optimization from Time Series Data
- Authors: Jianhong Chen, Ying Ma, Xubo Yue,
- Abstract summary: In real-world scenarios, data are often distributed across multiple entities that seek to collaboratively learn a Dynamic Bayesian Network.
We introduce a federated learning approach for estimating the structure of a Dynamic Bayesian Network from homogeneous time series data.
We then extend this approach to heterogeneous time series data by incorporating a proximal operator as a regularization term in a personalized federated learning framework.
- Score: 2.4305626489408465
- License:
- Abstract: Traditionally, learning the structure of a Dynamic Bayesian Network has been centralized, requiring all data to be pooled in one location. However, in real-world scenarios, data are often distributed across multiple entities (e.g., companies, devices) that seek to collaboratively learn a Dynamic Bayesian Network while preserving data privacy and security. More importantly, due to the presence of diverse clients, the data may follow different distributions, resulting in data heterogeneity. This heterogeneity poses additional challenges for centralized approaches. In this study, we first introduce a federated learning approach for estimating the structure of a Dynamic Bayesian Network from homogeneous time series data that are horizontally distributed across different parties. We then extend this approach to heterogeneous time series data by incorporating a proximal operator as a regularization term in a personalized federated learning framework. To this end, we propose \texttt{FDBNL} and \texttt{PFDBNL}, which leverage continuous optimization, ensuring that only model parameters are exchanged during the optimization process. Experimental results on synthetic and real-world datasets demonstrate that our method outperforms state-of-the-art techniques, particularly in scenarios with many clients and limited individual sample sizes.
Related papers
- Federated Foundation Models on Heterogeneous Time Series [36.229082478423585]
Efforts are primarily focused on fusing cross-domain time series datasets to extract shared subsequences as tokens for training models on Transformer architecture.
This paper proposes a novel federated learning approach to address the heterogeneity in time series foundation models training, namely FFTS.
The newly learned time series foundation models achieve superior generalization capabilities on cross-domain time series analysis tasks, including forecasting, imputation, and anomaly detection.
arXiv Detail & Related papers (2024-12-12T03:38:01Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.
FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.
We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Towards Federated Bayesian Network Structure Learning with Continuous
Optimization [14.779035801521717]
We present a cross-silo federated learning approach to estimate the structure of Bayesian network.
We develop a distributed structure learning method based on continuous optimization.
arXiv Detail & Related papers (2021-10-18T14:36:05Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.