Precise Antigen-Antibody Structure Predictions Enhance Antibody Development with HelixFold-Multimer
- URL: http://arxiv.org/abs/2412.09826v1
- Date: Fri, 13 Dec 2024 03:36:23 GMT
- Title: Precise Antigen-Antibody Structure Predictions Enhance Antibody Development with HelixFold-Multimer
- Authors: Jie Gao, Jing Hu, Lihang Liu, Yang Xue, Kunrui Zhu, Xiaonan Zhang, Xiaomin Fang,
- Abstract summary: HelixFold-Multimer builds on the framework of AlphaFold-Multimer.
It provides insights into antibody development, enabling more precise identification of binding sites.
These advances underscore HelixFold-Multimer's potential in supporting antibody research and therapeutic innovation.
- Score: 7.702856943171885
- License:
- Abstract: The accurate prediction of antigen-antibody structures is essential for advancing immunology and therapeutic development, as it helps elucidate molecular interactions that underlie immune responses. Despite recent progress with deep learning models like AlphaFold and RoseTTAFold, accurately modeling antigen-antibody complexes remains a challenge due to their unique evolutionary characteristics. HelixFold-Multimer, a specialized model developed for this purpose, builds on the framework of AlphaFold-Multimer and demonstrates improved precision for antigen-antibody structures. HelixFold-Multimer not only surpasses other models in accuracy but also provides essential insights into antibody development, enabling more precise identification of binding sites, improved interaction prediction, and enhanced design of therapeutic antibodies. These advances underscore HelixFold-Multimer's potential in supporting antibody research and therapeutic innovation.
Related papers
- Leveraging Large Language Models to Predict Antibody Biological Activity Against Influenza A Hemagglutinin [0.15547733154162566]
We develop an AI model for predicting the binding and receptor blocking activity of antibodies against influenza A hemagglutininin (HA) antigens.
Our models achieved an AUROC $geq$ 0.91 for predicting the activity of existing antibodies against seen HAs and an AUROC of 0.9 for unseen HAs.
arXiv Detail & Related papers (2025-02-02T06:48:45Z) - Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization [61.06622479173572]
We propose a novel Relation-Aware Design (RAAD) framework, which models antigen-antibody interactions for co-designing sequences and structures of antigen-specific CDRs.
Furthermore, we propose a new evaluation metric to better measure antibody specificity and develop a contrasting specificity-enhancing constraint to optimize the specificity of antibodies.
arXiv Detail & Related papers (2024-12-14T03:00:44Z) - S$^2$ALM: Sequence-Structure Pre-trained Large Language Model for Comprehensive Antibody Representation Learning [8.059724314850799]
Antibodies safeguard our health through their precise and potent binding to specific antigens, demonstrating promising therapeutic efficacy in the treatment of numerous diseases, including COVID-19.
Recent advancements in biomedical language models have shown the great potential to interpret complex biological structures and functions.
This paper proposes Sequence-Structure multi-level pre-trained antibody Language Model (S$2$ALM), combining holistic sequential and structural information in one unified, generic antibody foundation model.
arXiv Detail & Related papers (2024-11-20T14:24:26Z) - Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization [8.546688995090491]
Antibodies are essential proteins responsible for immune responses in organisms.
Recent advances in generative models have significantly enhanced rational antibody design.
We propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design.
arXiv Detail & Related papers (2024-10-19T08:53:01Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
Deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences.
The computational methods heavily rely on high-quality antibody structure data, which is quite limited.
Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data.
arXiv Detail & Related papers (2022-10-26T15:31:36Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency.
Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance.
In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data.
arXiv Detail & Related papers (2022-10-05T20:44:55Z) - Deciphering antibody affinity maturation with language models and weakly
supervised learning [10.506336354512145]
We introduce AntiBERTy, a language model trained on 558M natural antibody sequences.
We find that within repertoires, our model clusters antibodies into trajectories resembling affinity maturation.
We show that models trained to predict highly redundant sequences under a multiple instance learning framework identify key binding residues in the process.
arXiv Detail & Related papers (2021-12-14T23:05:01Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.