Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization
- URL: http://arxiv.org/abs/2410.15040v1
- Date: Sat, 19 Oct 2024 08:53:01 GMT
- Title: Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization
- Authors: Zichen Wang, Yaokun Ji, Jianing Tian, Shuangjia Zheng,
- Abstract summary: Antibodies are essential proteins responsible for immune responses in organisms.
Recent advances in generative models have significantly enhanced rational antibody design.
We propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design.
- Score: 8.546688995090491
- License:
- Abstract: Antibodies are essential proteins responsible for immune responses in organisms, capable of specifically recognizing antigen molecules of pathogens. Recent advances in generative models have significantly enhanced rational antibody design. However, existing methods mainly create antibodies from scratch without template constraints, leading to model optimization challenges and unnatural sequences. To address these issues, we propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design. Our method leverages a set of structural homologous motifs that align with query structural constraints to guide the generative model in inversely optimizing antibodies according to desired design criteria. Specifically, we introduce a structure-informed retrieval mechanism that integrates these exemplar motifs with the input backbone through a novel dual-branch denoising module, utilizing both structural and evolutionary information. Additionally, we develop a conditional diffusion model that iteratively refines the optimization process by incorporating both global context and local evolutionary conditions. Our approach is agnostic to the choice of generative models. Empirical experiments demonstrate that our method achieves state-of-the-art performance in multiple antibody inverse folding and optimization tasks, offering a new perspective on biomolecular generative models.
Related papers
- Improving Antibody Design with Force-Guided Sampling in Diffusion Models [39.94753945046461]
We propose a novel approach to enhance the sampling process of diffusion models by integrating force field energy-based feedback.
Our model, DiffForce, employs forces to guide the diffusion sampling process, effectively blending the two distributions.
arXiv Detail & Related papers (2024-06-09T15:50:35Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization [51.28231365213679]
We tackle antigen-specific antibody sequence-structure co-design as an optimization problem towards specific preferences.
We propose direct energy-based preference optimization to guide the generation of antibodies with both rational structures and considerable binding affinities to given antigens.
arXiv Detail & Related papers (2024-03-25T09:41:49Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
Deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences.
The computational methods heavily rely on high-quality antibody structure data, which is quite limited.
Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data.
arXiv Detail & Related papers (2022-10-26T15:31:36Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
We propose a generative model to automatically design antibodies with enhanced binding specificity or neutralization capabilities.
Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.
arXiv Detail & Related papers (2021-10-09T18:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.