論文の概要: A Single-Frame and Multi-Frame Cascaded Image Super-Resolution Method
- arxiv url: http://arxiv.org/abs/2412.09846v1
- Date: Fri, 13 Dec 2024 04:29:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:58.608118
- Title: A Single-Frame and Multi-Frame Cascaded Image Super-Resolution Method
- Title(参考訳): 単フレーム・多フレームカスケード画像超解法
- Authors: Jing Sun, Qiangqiang Yuan, Huanfeng Shen, Jie Li, Liangpei Zhang,
- Abstract要約: 現実の世界では、補間情報が限られているため、倍率の増加に伴い、シングルフレームとマルチフレームの超解像再構成の性能は急速に低下する。
マルチフレーム超解像と単一フレーム超解像を結合した2段階画像超解像法を提案する。
提案手法は,主観的および知覚的品質測定において優れた性能を示す。
- 参考スコア(独自算出の注目度): 22.91510009724401
- License:
- Abstract: The objective of image super-resolution is to reconstruct a high-resolution (HR) image with the prior knowledge from one or several low-resolution (LR) images. However, in the real world, due to the limited complementary information, the performance of both single-frame and multi-frame super-resolution reconstruction degrades rapidly as the magnification increases. In this paper, we propose a novel two-step image super resolution method concatenating multi-frame super-resolution (MFSR) with single-frame super-resolution (SFSR), to progressively upsample images to the desired resolution. The proposed method consisting of an L0-norm constrained reconstruction scheme and an enhanced residual back-projection network, integrating the flexibility of the variational modelbased method and the feature learning capacity of the deep learning-based method. To verify the effectiveness of the proposed algorithm, extensive experiments with both simulated and real world sequences were implemented. The experimental results show that the proposed method yields superior performance in both objective and perceptual quality measurements. The average PSNRs of the cascade model in set5 and set14 are 33.413 dB and 29.658 dB respectively, which are 0.76 dB and 0.621 dB more than the baseline method. In addition, the experiment indicates that this cascade model can be robustly applied to different SFSR and MFSR methods.
- Abstract(参考訳): 超解像の目的は、1つまたは複数の低分解能(LR)画像から事前の知識で高分解能(HR)画像を再構成することである。
しかし、現実の世界では、補間情報が限られているため、倍率の増加に伴い、単フレームと多フレームの超解像再構成の性能は急速に低下する。
本稿では,マルチフレーム超解像(MFSR)と単一フレーム超解像(SFSR)を結合した2段階画像超解像法を提案する。
提案手法は,L0-ノルム制約付き再構成スキームと改良された残射影ネットワークから構成され,変分モデルに基づく手法の柔軟性と深層学習に基づく手法の特徴学習能力を統合する。
提案アルゴリズムの有効性を検証するため,シミュレーションと実世界の双方で広範な実験を行った。
実験の結果,提案手法は客観的および知覚的品質測定において優れた性能を示すことがわかった。
set5 と set14 のカスケードモデルの PSNR は、それぞれ 33.413 dB と 29.658 dB であり、ベースライン法よりも 0.76 dB と 0.621 dB である。
さらに, このカスケードモデルは, 異なるSFSR法とMFSR法に頑健に適用可能であることを示す。
関連論文リスト
- Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
我々は, この手法の軌道最適化を再構築し, 復元品質と効率の両立に焦点をあてる。
本稿では,複雑な経路を適応可能なサイズで複数の管理可能なステップに合理化するためのコスト対応トラジェクトリー蒸留法を提案する。
実験では提案手法の有意な優位性を示し, 最先端手法よりも最大2.1dBのPSNR改善を実現した。
論文 参考訳(メタデータ) (2024-10-07T07:46:08Z) - A New Dataset and Framework for Real-World Blurred Images Super-Resolution [9.122275433854062]
我々は,Real-world Blur-kept Super-Resolution (ReBlurSR) データセットという,ぼやけた画像に適した新しい超解像データセットを開発した。
本稿では,Cross Disentanglement Module (CDM) とCross Fusion Module (CFM) の2つの主要モジュールからなるPerceptual-Blur-adaptive Super-Resolution (PBaSR)を提案する。
これら2つのモジュールを統合することで、PBaSRは、追加の推論やデプロイメントコストを伴わずに、一般的なデータと曖昧なデータの両方でコメンタブルなパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-07-20T14:07:03Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
単一の画像超解像(SISR)は、主に深層畳み込みネットワークによって大きく進歩した。
従来のネットワークは、画像を一定のスケールにスケールアップすることに限定されており、任意のスケールのイメージを生成するために暗黙の神経機能を利用することになる。
我々は,任意のスケールで超解像を実現する,新しい,効率的なフレームワークであるMixture of Experts Implicit Super-Resolution(MoEISR)を導入する。
論文 参考訳(メタデータ) (2023-11-20T05:34:36Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Generalized Expectation Maximization Framework for Blind Image Super
Resolution [28.108363151431877]
視覚障害者のためのエンドツーエンド学習フレームワークを提案する。
提案手法は,一般予測最大化(GEM)アルゴリズムに学習手法を統合し,最大推定(MLE)からHR画像を推定する。
論文 参考訳(メタデータ) (2023-05-23T10:01:58Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
低解像度(LR)クエリIDイメージと高解像度(HR)ギャラリーイメージとの整合性を実現する。
実際のカメラとの違いにより、クエリ画像が分解能の低下に悩まされることがしばしばあるため、これは困難かつ実用的な問題である。
本稿では,問合せ画像の解像度に適応する動的計量を用いて,HRとLRの画像を直接比較するためのSRフリーなパラダイムについて検討する。
論文 参考訳(メタデータ) (2022-07-09T03:49:51Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - SRR-Net: A Super-Resolution-Involved Reconstruction Method for High
Resolution MR Imaging [7.42807471627113]
提案するsrr-netは、視覚品質と知覚品質の両方の高分解能脳画像を復元することができる。
In-vivo HR Multi-coil 脳データを用いた実験の結果,提案したSRR-Netは高分解能脳画像の復元が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-04-13T02:19:12Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。