Byte Latent Transformer: Patches Scale Better Than Tokens
- URL: http://arxiv.org/abs/2412.09871v1
- Date: Fri, 13 Dec 2024 05:33:32 GMT
- Title: Byte Latent Transformer: Patches Scale Better Than Tokens
- Authors: Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srinivasan Iyer,
- Abstract summary: Byte Latent Transformer (BLT) encodes bytes into dynamically sized patches, which serve as the primary units of computation.
For fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.
- Score: 101.10994909832063
- License:
- Abstract: We introduce the Byte Latent Transformer (BLT), a new byte-level LLM architecture that, for the first time, matches tokenization-based LLM performance at scale with significant improvements in inference efficiency and robustness. BLT encodes bytes into dynamically sized patches, which serve as the primary units of computation. Patches are segmented based on the entropy of the next byte, allocating more compute and model capacity where increased data complexity demands it. We present the first FLOP controlled scaling study of byte-level models up to 8B parameters and 4T training bytes. Our results demonstrate the feasibility of scaling models trained on raw bytes without a fixed vocabulary. Both training and inference efficiency improve due to dynamically selecting long patches when data is predictable, along with qualitative improvements on reasoning and long tail generalization. Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.
Related papers
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Transformer Layer Injection: A Novel Approach for Efficient Upscaling of Large Language Models [0.0]
Transformer Layer Injection (TLI) is a novel method for efficiently upscaling large language models (LLMs)
Our approach improves upon the conventional Depth Up-Scaling (DUS) technique by injecting new layers into every set of K layers.
arXiv Detail & Related papers (2024-10-15T14:41:44Z) - ReTok: Replacing Tokenizer to Enhance Representation Efficiency in Large Language Model [9.1108256816605]
We propose a method to improve model representation and processing efficiency by replacing the tokenizers of large language models (LLMs)
Our method can maintain the performance of the model after replacing the tokenizer, while significantly improving the decoding speed for long texts.
arXiv Detail & Related papers (2024-10-06T03:01:07Z) - Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis [16.253898272659242]
This study focuses on Transformer-based LLMs, specifically applying low-rank parametrization to feedforward networks (FFNs)
Experiments on the large RefinedWeb dataset show that low-rank parametrization is both efficient (e.g., 2.6$times$ FFN speed-up with 32% parameters) and effective during training.
Motivated by this finding, we develop the wide and structured networks surpassing the current medium-sized and large-sized Transformer in perplexity and throughput performance.
arXiv Detail & Related papers (2024-07-13T10:08:55Z) - On the Scalability of Diffusion-based Text-to-Image Generation [97.64837704129005]
We study scaling properties of diffusion based text-to-image (T2I) models.
For model scaling, we find the location and amount of cross attention distinguishes the performance of existing UNet designs.
On the data scaling side, we show the quality and diversity of the training set matters more than simply dataset size.
arXiv Detail & Related papers (2024-04-03T17:34:28Z) - SPT: Fine-Tuning Transformer-based Language Models Efficiently with
Sparsification [14.559316921646356]
Fine-tuning Transformer-based models for downstream tasks has long running time and high memory consumption.
We propose the SPT system to fine-tune Transformer-based models efficiently by introducing sparsity.
SPT consistently outperforms well-optimized baselines, reducing the peak memory consumption by up to 50% and accelerating fine-tuning by up to 2.2x.
arXiv Detail & Related papers (2023-12-16T07:44:52Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Infor-Coef: Information Bottleneck-based Dynamic Token Downsampling for
Compact and Efficient language model [0.0]
Excessive overhead leads to large latency and computational costs.
We propose a model accelaration approaches for large language models.
Our model achieves an 18x FLOPs speedup with an accuracy degradation of less than 8% compared to BERT.
arXiv Detail & Related papers (2023-05-21T13:30:56Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.