Benchmarking Table Comprehension In The Wild
- URL: http://arxiv.org/abs/2412.09884v1
- Date: Fri, 13 Dec 2024 05:52:37 GMT
- Title: Benchmarking Table Comprehension In The Wild
- Authors: Yikang Pan, Yi Zhu, Rand Xie, Yizhi Liu,
- Abstract summary: TableQuest is a new benchmark designed to evaluate the holistic table comprehension capabilities of Large Language Models (LLMs)
We experiment with 7 state-of-the-art models, and find that despite reasonable accuracy in locating facts, they often falter when required to execute more sophisticated reasoning or multi-step calculations.
- Score: 9.224698222634789
- License:
- Abstract: Large Language Models (LLMs), while being increasingly dominant on a myriad of knowledge-intensive activities, have only had limited success understanding lengthy table-text mixtures, such as academic papers and financial reports. Recent advances of long-context LLMs have opened up new possibilities for this field. Nonetheless, we identify two roadblocks: (1) Prior benchmarks of table question answering (TableQA) have focused on isolated tables without context, making it hard to evaluate models in real-world scenarios. (2) Prior benchmarks have focused on some narrow skill sets of table comprehension such as table recognition, data manipulation/calculation, table summarization etc., while a skilled human employs those skills collectively. In this work, we introduce TableQuest, a new benchmark designed to evaluate the holistic table comprehension capabilities of LLMs in the natural table-rich context of financial reports. We employ a rigorous data processing and filtering procedure to ensure that the question-answer pairs are logical, reasonable, and diverse. We experiment with 7 state-of-the-art models, and find that despite reasonable accuracy in locating facts, they often falter when required to execute more sophisticated reasoning or multi-step calculations. We conclude with a qualitative study of the failure modes and discuss the challenges of constructing a challenging benchmark. We make the evaluation data, judging procedure and results of this study publicly available to facilitate research in this field.
Related papers
- Interpretable LLM-based Table Question Answering [5.940265173828534]
Plan-of-inputs ( or POS) is an interpretable, effective, and efficient approach to Table QA.
We show that POS is most preferred among explanation methods, helps human users understand model decision boundaries, and facilitates model success and error identification.
arXiv Detail & Related papers (2024-12-16T22:44:31Z) - ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models [58.34560740973768]
We introduce a framework that leverages language models (LMs) to generate literature review tables.
A new dataset of 2,228 literature review tables extracted from ArXiv papers synthesize a total of 7,542 research papers.
We evaluate LMs' abilities to reconstruct reference tables, finding this task benefits from additional context.
arXiv Detail & Related papers (2024-10-25T18:31:50Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.
TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.
Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - TableBench: A Comprehensive and Complex Benchmark for Table Question Answering [33.64465594140019]
This paper investigates the application of Large Language Models (LLMs) in industrial scenarios.
We propose a comprehensive and complex benchmark TableBench, including 18 fields within four major categories of table question answering (TableQA) capabilities.
Massive experiments conducted on TableBench indicate that both open-source and proprietary LLMs still have significant room for improvement to meet real-world demands.
arXiv Detail & Related papers (2024-08-17T11:40:10Z) - Uncovering Limitations of Large Language Models in Information Seeking from Tables [28.19697259795014]
This paper introduces a more reliable benchmark for Table Information Seeking (TabIS)
To avoid the unreliable evaluation caused by text similarity-based metrics, TabIS adopts a single-choice question format (with two options per question) instead of a text generation format.
arXiv Detail & Related papers (2024-06-06T14:30:59Z) - Wiki-TabNER:Advancing Table Interpretation Through Named Entity
Recognition [19.423556742293762]
We analyse a widely used benchmark dataset for evaluation of TI tasks.
To overcome this drawback, we construct and annotate a new more challenging dataset.
We propose a prompting framework for evaluating the newly developed large language models.
arXiv Detail & Related papers (2024-03-07T15:22:07Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
This study explores Large Language Models' mathematical reasoning on four financial question-answering datasets.
We focus on sensitivity to table complexity and performance variations with an increasing number of arithmetic reasoning steps.
We introduce a novel prompting technique tailored to semi-structured documents, matching or outperforming other baselines in performance.
arXiv Detail & Related papers (2024-02-17T05:10:18Z) - A Survey of Table Reasoning with Large Language Models [55.2326738851157]
Using Large Language Models (LLMs) has become the mainstream method for table reasoning.
We analyze the mainstream techniques used to improve table reasoning performance in the LLM era.
We provide research directions from both the improvement of existing methods and the expansion of practical applications.
arXiv Detail & Related papers (2024-02-13T07:17:52Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
We develop a simple table-based QA model with minimal annotation effort.
We propose an omnivorous pretraining approach that consumes both natural and synthetic data.
arXiv Detail & Related papers (2022-07-08T01:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.