論文の概要: Analyzing Fairness of Classification Machine Learning Model with Structured Dataset
- arxiv url: http://arxiv.org/abs/2412.09896v1
- Date: Fri, 13 Dec 2024 06:31:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:52.064985
- Title: Analyzing Fairness of Classification Machine Learning Model with Structured Dataset
- Title(参考訳): 構造化データセットを用いた分類機械学習モデルの公平性の解析
- Authors: Ahmed Rashed, Abdelkrim Kallich, Mohamed Eltayeb,
- Abstract要約: 本研究では,分類タスクにおける構造化データセットに適用された機械学習モデルの公平性について検討する。
3つのフェアネスライブラリ、MicrosoftのFairlearn、IBMのAIF360、GoogleのWhat If Toolが採用されている。
この研究は、MLモデルのバイアスの程度を評価し、これらのライブラリの有効性を比較し、実践者に対して実行可能な洞察を導出することを目的としている。
- 参考スコア(独自算出の注目度): 1.0923877073891446
- License:
- Abstract: Machine learning (ML) algorithms have become integral to decision making in various domains, including healthcare, finance, education, and law enforcement. However, concerns about fairness and bias in these systems pose significant ethical and social challenges. This study investigates the fairness of ML models applied to structured datasets in classification tasks, highlighting the potential for biased predictions to perpetuate systemic inequalities. A publicly available dataset from Kaggle was selected for analysis, offering a realistic scenario for evaluating fairness in machine learning workflows. To assess and mitigate biases, three prominent fairness libraries; Fairlearn by Microsoft, AIF360 by IBM, and the What If Tool by Google were employed. These libraries provide robust frameworks for analyzing fairness, offering tools to evaluate metrics, visualize results, and implement bias mitigation strategies. The research aims to assess the extent of bias in the ML models, compare the effectiveness of these libraries, and derive actionable insights for practitioners. The findings reveal that each library has unique strengths and limitations in fairness evaluation and mitigation. By systematically comparing their capabilities, this study contributes to the growing field of ML fairness by providing practical guidance for integrating fairness tools into real world applications. These insights are intended to support the development of more equitable machine learning systems.
- Abstract(参考訳): 機械学習(ML)アルゴリズムは、医療、金融、教育、法執行など、さまざまな領域における意思決定に不可欠なものになっている。
しかしながら、これらのシステムにおける公平性とバイアスに関する懸念は、倫理的・社会的課題を著しく引き起こす。
本研究では、分類タスクにおける構造化データセットに適用されたMLモデルの公平性について検討し、体系的不等式を永続するバイアス付き予測の可能性を明らかにする。
Kaggleの公開データセットが分析のために選択され、マシンラーニングワークフローの公正性を評価するための現実的なシナリオを提供する。
バイアスを評価し緩和するために、MicrosoftのFairlearn、IBMのAIF360、GoogleのWhat If Toolの3つの顕著なフェアネスライブラリが採用された。
これらのライブラリは、公正性を分析し、メトリクスを評価し、結果を視覚化し、バイアス軽減戦略を実装するための堅牢なフレームワークを提供する。
本研究の目的は,MLモデルにおけるバイアスの程度を評価し,これらのライブラリの有効性を比較し,実践者に対して実行可能な洞察を導き出すことである。
その結果, 各図書館は, 公正度評価と緩和において, 独特な長所と限界があることが判明した。
本研究は,それらの能力を体系的に比較することにより,現実のアプリケーションに公正ツールを統合するための実践的ガイダンスを提供することにより,MLフェアネスの分野の成長に寄与する。
これらの洞察は、より公平な機械学習システムの開発を支援することを目的としている。
関連論文リスト
- Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
論文 参考訳(メタデータ) (2024-10-02T10:03:29Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
本稿では,10の代表的な公正性を考慮したグラフ学習手法に関する広範なベンチマークを示す。
我々の詳細な分析は、既存の手法の強みと限界に関する重要な洞察を明らかにしている。
論文 参考訳(メタデータ) (2024-07-16T18:43:43Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven
Social-Critical Algorithms [13.649336187121095]
この論文は、機械学習(ML)モデル説明ツールが、機械学習ベースの意思決定支援システムにおける不公平さを、レイマンが可視化し、理解し、直感的に改善できるかどうかを探求する。
この論文では、概念実証のGUIであるFairLay-MLを紹介し、最も有望なツールを統合し、MLモデルにおける不公平なロジックの直感的な説明を提供する。
論文 参考訳(メタデータ) (2023-07-11T06:05:06Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Individual Fairness under Uncertainty [26.183244654397477]
アルゴリズムフェアネス(英: Algorithmic Fairness)は、機械学習(ML)アルゴリズムにおいて確立された領域である。
本稿では,クラスラベルの検閲によって生じる不確実性に対処する,個別の公正度尺度とそれに対応するアルゴリズムを提案する。
この視点は、現実世界のアプリケーションデプロイメントにおいて、より現実的なフェアネス研究のモデルである、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-16T01:07:58Z) - A survey on datasets for fairness-aware machine learning [6.962333053044713]
多くのフェアネス対応機械学習ソリューションが提案されている。
本稿では,フェアネスを意識した機械学習に使用される実世界のデータセットについて概説する。
データセットのバイアスと公平性についてより深く理解するために、探索分析を用いて興味深い関係を考察する。
論文 参考訳(メタデータ) (2021-10-01T16:54:04Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。