論文の概要: FaceShield: Defending Facial Image against Deepfake Threats
- arxiv url: http://arxiv.org/abs/2412.09921v1
- Date: Fri, 13 Dec 2024 07:20:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:51.380150
- Title: FaceShield: Defending Facial Image against Deepfake Threats
- Title(参考訳): FaceShield: ディープフェイクの脅威に対する顔画像の保護
- Authors: Jaehwan Jeong, Sumin In, Sieun Kim, Hannie Shin, Jongheon Jeong, Sang Ho Yoon, Jaewook Chung, Sangpil Kim,
- Abstract要約: 犯罪活動におけるディープフェイクの使用の増加は重大な問題を示し、広範な論争を引き起こしている。
拡散モデル(DM)が生み出すディープフェイクを標的とした新たな攻撃戦略を提案する。
提案手法は3つの主要要素からなる: (i) DMの注意機構を操作し, 認知過程において保護された顔の特徴を排除し, (ii) 敵の摂動の堅牢性を高めるために顕著な顔特徴抽出モデルをターゲットにし, (iii) ガウス的ぼかしとローパスフィルタリング技術を用いてJPEG歪みに対する頑健性を高めつつ, 知覚能力を向上させる。
- 参考スコア(独自算出の注目度): 11.78218702283404
- License:
- Abstract: The rising use of deepfakes in criminal activities presents a significant issue, inciting widespread controversy. While numerous studies have tackled this problem, most primarily focus on deepfake detection. These reactive solutions are insufficient as a fundamental approach for crimes where authenticity verification is not critical. Existing proactive defenses also have limitations, as they are effective only for deepfake models based on specific Generative Adversarial Networks (GANs), making them less applicable in light of recent advancements in diffusion-based models. In this paper, we propose a proactive defense method named FaceShield, which introduces novel attack strategies targeting deepfakes generated by Diffusion Models (DMs) and facilitates attacks on various existing GAN-based deepfake models through facial feature extractor manipulations. Our approach consists of three main components: (i) manipulating the attention mechanism of DMs to exclude protected facial features during the denoising process, (ii) targeting prominent facial feature extraction models to enhance the robustness of our adversarial perturbation, and (iii) employing Gaussian blur and low-pass filtering techniques to improve imperceptibility while enhancing robustness against JPEG distortion. Experimental results on the CelebA-HQ and VGGFace2-HQ datasets demonstrate that our method achieves state-of-the-art performance against the latest deepfake models based on DMs, while also exhibiting applicability to GANs and showcasing greater imperceptibility of noise along with enhanced robustness.
- Abstract(参考訳): 犯罪活動におけるディープフェイクの使用の増加は重大な問題を示し、広範な論争を引き起こしている。
この問題に多くの研究が取り組んできたが、主にディープフェイク検出に焦点を当てている。
これらの反応解は、真正性検証が重要でない犯罪の基本的なアプローチとして不十分である。
既存のプロアクティブディフェンスは、特定のGAN(Generative Adversarial Networks)に基づくディープフェイクモデルにのみ有効であり、拡散ベースモデルの最近の進歩に照らして適用できないため、制限がある。
本稿では,Diffusion Models (DM) が生み出すディープフェイクを標的とした新たな攻撃戦略を導入し,顔特徴抽出器の操作により,既存のGANベースのディープフェイクモデルに対する攻撃を容易にするFaceShieldというプロアクティブディフェンス手法を提案する。
私たちのアプローチは3つの主要コンポーネントで構成されています。
一 DMの注意機構を操り、認知過程において保護された顔の特徴を排除すること。
二 対人摂動の堅牢性を高めるために顔の特徴抽出モデルをターゲットにし、
(3)ガウスのぼかしと低パスフィルタを用いてJPEG歪みに対する頑健性を高めつつ、非受容性を向上する。
CelebA-HQとVGGFace2-HQのデータセットによる実験結果から,本手法はDMに基づく最新のディープフェイクモデルに対して最先端の性能を実現するとともに,GANの適用性を示し,騒音の受容性の向上と頑健性の向上を示す。
関連論文リスト
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
本稿では,デジタル攻撃に対する最先端の対面防止手法の脆弱性に光を当てる。
反偽造システムに遭遇する一般的な脅威を包括的に分類する。
論文 参考訳(メタデータ) (2024-06-06T02:05:35Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm [6.515472477685614]
敵対的攻撃に対するディープニューラルネットワーク(DNN)の感受性は、多くのアプリケーションにまたがる信頼性を損なう。
本稿では,DeepFoolの進化であるET DeepFoolアルゴリズムを紹介する。
我々の実証的研究は、画像の整合性を維持する上で、この洗練されたアプローチが優れていることを示すものである。
論文 参考訳(メタデータ) (2023-10-18T18:50:39Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
我々は,最新の生成手法によって生成されたブラックボックス攻撃に対する単一イメージのディープフェイク検出器の脆弱性について検討した。
われわれの実験はFaceForensics++で行われている。
以上の結果から,ディープフェイクの再建過程において,1段階の偏微分拡散のみを用いることで,検出可能性を大幅に低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-11T15:57:51Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
生成モデルによって作成された悪意のある視覚コンテンツであるディープフェイクは、社会にますます有害な脅威をもたらす。
近年のディープフェイクの損傷を積極的に軽減するために, 逆方向の摂動を用いてディープフェイクモデルの出力を妨害する研究が進められている。
そこで本研究では,Latent Ensemble ATtack (LEAT) と呼ばれる簡易かつ効果的なディスラプション手法を提案する。
論文 参考訳(メタデータ) (2023-07-04T07:00:37Z) - Detecting Adversarial Faces Using Only Real Face Self-Perturbations [36.26178169550577]
アドリアックは、入力サンプルに特定のノイズを加えることで、ターゲットシステムの機能を妨害することを目的としている。
既存の防御技術は、特定の対向顔(adv-faces)の検出において高い精度を達成する
全く異なるノイズパターンを持つ新しい攻撃方法、特にGANベースの攻撃は、それらを回避し、より高い攻撃成功率に達する。
論文 参考訳(メタデータ) (2023-04-22T09:55:48Z) - Restricted Black-box Adversarial Attack Against DeepFake Face Swapping [70.82017781235535]
本稿では,顔画像偽造モデルに対する問い合わせを一切必要としない現実的な敵攻撃を提案する。
本手法は,顔の再構成を行う代用モデルに基づいて構築され,置換モデルから非アクセス可能なブラックボックスDeepFakeモデルへの逆例を直接転送する。
論文 参考訳(メタデータ) (2022-04-26T14:36:06Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。