Going Beyond Feature Similarity: Effective Dataset distillation based on Class-aware Conditional Mutual Information
- URL: http://arxiv.org/abs/2412.09945v1
- Date: Fri, 13 Dec 2024 08:10:47 GMT
- Title: Going Beyond Feature Similarity: Effective Dataset distillation based on Class-aware Conditional Mutual Information
- Authors: Xinhao Zhong, Bin Chen, Hao Fang, Xulin Gu, Shu-Tao Xia, En-Hui Yang,
- Abstract summary: We introduce conditional mutual information (CMI) to assess the class-aware complexity of a dataset.
We minimize the distillation loss while constraining the class-aware complexity of the synthetic dataset.
- Score: 43.44508080585033
- License:
- Abstract: Dataset distillation (DD) aims to minimize the time and memory consumption needed for training deep neural networks on large datasets, by creating a smaller synthetic dataset that has similar performance to that of the full real dataset. However, current dataset distillation methods often result in synthetic datasets that are excessively difficult for networks to learn from, due to the compression of a substantial amount of information from the original data through metrics measuring feature similarity, e,g., distribution matching (DM). In this work, we introduce conditional mutual information (CMI) to assess the class-aware complexity of a dataset and propose a novel method by minimizing CMI. Specifically, we minimize the distillation loss while constraining the class-aware complexity of the synthetic dataset by minimizing its empirical CMI from the feature space of pre-trained networks, simultaneously. Conducting on a thorough set of experiments, we show that our method can serve as a general regularization method to existing DD methods and improve the performance and training efficiency.
Related papers
- Enhancing Generalization via Sharpness-Aware Trajectory Matching for Dataset Condensation [37.77454972709646]
We introduce Sharpness-Aware Trajectory Matching (SATM), which enhances the generalization capability of learned synthetic datasets.
Our approach is mathematically well-supported and straightforward to implement along with controllable computational overhead.
arXiv Detail & Related papers (2025-02-03T22:30:06Z) - Dataset Distillation as Pushforward Optimal Quantization [1.039189397779466]
We propose a simple extension of the state-of-the-art data distillation method D4M, achieving better performance on the ImageNet-1K dataset with trivial additional computation.
We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem.
In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors.
arXiv Detail & Related papers (2025-01-13T20:41:52Z) - CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting [22.473436770730657]
The objective of dataset condensation is to ensure that the model trained with the synthetic dataset can perform comparably to the model trained with full datasets.
In classification, the synthetic data is considered well-distilled if the model trained with the full dataset and the model trained with the synthetic dataset yield identical labels for the same input.
In TS-forecasting, the effectiveness of synthetic data distillation is determined by the distance between predictions of the two models.
arXiv Detail & Related papers (2024-06-04T09:18:20Z) - Koopcon: A new approach towards smarter and less complex learning [13.053285552524052]
In the era of big data, the sheer volume and complexity of datasets pose significant challenges in machine learning.
This paper introduces an innovative Autoencoder-based dataset condensation model backed by Koopman operator theory.
Inspired by the predictive coding mechanisms of the human brain, our model leverages a novel approach to encode and reconstruct data.
arXiv Detail & Related papers (2024-05-22T17:47:14Z) - Group Distributionally Robust Dataset Distillation with Risk Minimization [17.05513836324578]
We introduce an algorithm that combines clustering with the minimization of a risk measure on the loss to conduct DD.
We provide a theoretical rationale for our approach and demonstrate its effective generalization and robustness across subgroups.
arXiv Detail & Related papers (2024-02-07T09:03:04Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
Development of deep learning models is enabled by the availability of large-scale datasets.
dataset distillation aims to synthesize a compact dataset that retains the essential information from the large original dataset.
We propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance.
arXiv Detail & Related papers (2024-01-29T03:29:39Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - DC-BENCH: Dataset Condensation Benchmark [79.18718490863908]
This work provides the first large-scale standardized benchmark on dataset condensation.
It consists of a suite of evaluations to comprehensively reflect the generability and effectiveness of condensation methods.
The benchmark library is open-sourced to facilitate future research and application.
arXiv Detail & Related papers (2022-07-20T03:54:05Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
We propose a new formulation that optimize our distilled data to guide networks to a similar state as those trained on real data.
Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data.
Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
arXiv Detail & Related papers (2022-03-22T17:58:59Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.