論文の概要: Towards Fair Graph Neural Networks via Graph Counterfactual without Sensitive Attributes
- arxiv url: http://arxiv.org/abs/2412.09947v1
- Date: Fri, 13 Dec 2024 08:11:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:13.093595
- Title: Towards Fair Graph Neural Networks via Graph Counterfactual without Sensitive Attributes
- Title(参考訳): グラフカウンターファクトによる公正なグラフニューラルネットワークの実現に向けて
- Authors: Xuemin Wang, Tianlong Gu, Xuguang Bao, Liang Chang,
- Abstract要約: 本稿では,Fairwosというフレームワークを提案する。
まず, 疑似感性属性を生成する機構を提案し, 疑似感性属性の欠如を解消する。
次に、実際のデータセットからグラフ反事実を見つけるための戦略を設計する。
- 参考スコア(独自算出の注目度): 4.980930265721185
- License:
- Abstract: Graph-structured data is ubiquitous in today's connected world, driving extensive research in graph analysis. Graph Neural Networks (GNNs) have shown great success in this field, leading to growing interest in developing fair GNNs for critical applications. However, most existing fair GNNs focus on statistical fairness notions, which may be insufficient when dealing with statistical anomalies. Hence, motivated by causal theory, there has been growing attention to mitigating root causes of unfairness utilizing graph counterfactuals. Unfortunately, existing methods for generating graph counterfactuals invariably require the sensitive attribute. Nevertheless, in many real-world applications, it is usually infeasible to obtain sensitive attributes due to privacy or legal issues, which challenge existing methods. In this paper, we propose a framework named Fairwos (improving Fairness without sensitive attributes). In particular, we first propose a mechanism to generate pseudo-sensitive attributes to remedy the problem of missing sensitive attributes, and then design a strategy for finding graph counterfactuals from the real dataset. To train fair GNNs, we propose a method to ensure that the embeddings from the original data are consistent with those from the graph counterfactuals, and dynamically adjust the weight of each pseudo-sensitive attribute to balance its contribution to fairness and utility. Furthermore, we theoretically demonstrate that minimizing the relation between these pseudo-sensitive attributes and the prediction can enable the fairness of GNNs. Experimental results on six real-world datasets show that our approach outperforms state-of-the-art methods in balancing utility and fairness.
- Abstract(参考訳): グラフ構造化データは、今日のコネクテッドな世界でどこにでもある。
グラフニューラルネットワーク(GNN)はこの分野で大きな成功を収めており、クリティカルアプリケーションのための公正なGNNの開発への関心が高まっている。
しかし、既存の多くの公正なGNNは統計的公正の概念に焦点を当てており、統計的異常を扱う際には不十分である可能性がある。
そのため、因果論に動機付けられて、グラフカウンターファクティクスを利用した不公平の根本原因の緩和に注目が集まっている。
残念ながら、グラフカウンターファクトを生成する既存の方法は、必ずセンシティブな属性を必要とする。
それにもかかわらず、多くの現実世界のアプリケーションでは、プライバシや法的な問題によって機密性の高い属性を得ることができず、既存の手法に挑戦する。
本稿では,Fairwosというフレームワークを提案する。
特に,まず,疑似感性属性を生成するメカニズムを提案するとともに,実際のデータセットからグラフ反事実を見つけるための戦略を設計する。
公正なGNNを訓練するために、元のデータからの埋め込みがグラフのデファクトと一致していることを確認し、各疑似感性属性の重み付けを動的に調整し、その公正性と有用性への寄与をバランスさせる方法を提案する。
さらに,これらの擬似感性属性と予測の関係を最小化することで,GNNの公平性を向上できることを示す。
6つの実世界のデータセットによる実験結果から,本手法は実用性と公正性のバランスをとる上で,最先端の手法よりも優れていることが示された。
関連論文リスト
- One Fits All: Learning Fair Graph Neural Networks for Various Sensitive Attributes [40.57757706386367]
不変学習,すなわちFairINVに基づくグラフフェアネスフレームワークを提案する。
FairINVはセンシティブな属性分割を取り入れ、ラベルと各種のセンシティブな属性の間の急激な相関を排除し、公正なGNNを訓練する。
いくつかの実世界のデータセットの実験結果から、FairINVは最先端のフェアネスアプローチを著しく上回っていることが示されている。
論文 参考訳(メタデータ) (2024-06-19T13:30:17Z) - Enhancing Fairness in Unsupervised Graph Anomaly Detection through Disentanglement [33.565252991113766]
グラフ異常検出(GAD)は、金融詐欺検出から偽ニュース検出まで、さまざまなアプリケーションにおいてますます重要になっている。
現在のGAD法は主に公平性の問題を見落としており、特定の人口集団に対して差別的な決定が下される可能性がある。
DeFENDという属性グラフ上に,DisEntangle-based FairnEss-aware aNomaly Detectionフレームワークを考案した。
実世界のデータセットに対する実証的な評価から、DEFENDはGADにおいて効果的に機能し、最先端のベースラインと比較して公正性を著しく向上することが明らかとなった。
論文 参考訳(メタデータ) (2024-06-03T04:48:45Z) - MAPPING: Debiasing Graph Neural Networks for Fair Node Classification
with Limited Sensitive Information Leakage [1.8238848494579714]
公正ノード分類のためのモデルに依存しない新しい脱バイアスフレームワーク MAPPing を提案する。
以上の結果から,MAPPingは実用性と公正性,および機密情報漏洩のプライバシーリスクとのトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2024-01-23T14:59:46Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - Towards Fair Graph Neural Networks via Graph Counterfactual [38.721295940809135]
グラフニューラルネットワーク(GNN)は、グラフ上での表現(GNN)学習の優れた能力を示し、さまざまなタスクを容易にしている。
最近の研究によると、GNNはトレーニングデータからのバイアスを継承し、増幅する傾向にあり、高いシナリオでGNNが採用されることが懸念されている。
本研究では,非現実的な反事実を避けるために,非現実的な反事実をトレーニングデータから選択できる新しいフレームワークCAFを提案する。
論文 参考訳(メタデータ) (2023-07-10T23:28:03Z) - Fairness-Aware Graph Neural Networks: A Survey [53.41838868516936]
グラフニューラルネットワーク(GNN)はその表現力と最先端の予測性能によってますます重要になっている。
GNNは、基礎となるグラフデータと基本的な集約メカニズムによって生じる公平性の問題に悩まされる。
本稿では,GNNの公平性向上のためのフェアネス手法の検討と分類を行う。
論文 参考訳(メタデータ) (2023-07-08T08:09:06Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Improving Fairness in Graph Neural Networks via Mitigating Sensitive
Attribute Leakage [35.810534649478576]
グラフニューラルネットワーク(GNN)は、グラフ上のノード表現を学習する際の大きな力を示している。
GNNは、トレーニングデータから歴史的偏見を継承し、予測における差別的偏見をもたらす可能性がある。
本研究ではFairVGNN(Fair View Graph Neural Network)を提案する。
論文 参考訳(メタデータ) (2022-06-07T16:25:20Z) - Learning Fair Node Representations with Graph Counterfactual Fairness [56.32231787113689]
以上の事実から導かれるバイアスを考慮したグラフ反事実公正性を提案する。
我々は各ノードとその周辺住民の感度特性の摂動に対応する反事実を生成する。
我々のフレームワークはグラフの反ファクトフェアネスにおける最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2022-01-10T21:43:44Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
グラフニューラルネットワーク(GNN)は、グラフデータのテストとトレーニングを同一の分布から行うことで、優れたパフォーマンスを実現している。
既存のGNNでは、テストとグラフデータのトレーニングの間に分散シフトが存在する場合、その性能が著しく低下する。
本稿では,学習グラフと異なる分布を持つ未確認試験グラフに対して,満足な性能を実現するために,アウト・オブ・ディストリビューション一般化グラフニューラルネットワーク(OOD-GNN)を提案する。
論文 参考訳(メタデータ) (2021-12-07T16:29:10Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。