Performance analysis of different photon-mediated entanglement generation schemes under optical dephasing and spectral diffusion
- URL: http://arxiv.org/abs/2412.09976v1
- Date: Fri, 13 Dec 2024 09:02:18 GMT
- Title: Performance analysis of different photon-mediated entanglement generation schemes under optical dephasing and spectral diffusion
- Authors: Kinfung Ngan, Shuo Sun,
- Abstract summary: Solid-state quantum emitters offer qubit systems that integrate well with chip-scale photonic and electronic devices.
We compare the performance of three common photon-mediated entanglement schemes under realistic noise for solid-state quantum emitters.
- Score: 6.7626967426943745
- License:
- Abstract: Solid-state quantum emitters, such as quantum dots, color centers, rare-earth dopants, and organic molecules, offer qubit systems that integrate well with chip-scale photonic and electronic devices. To fully harness their potential for quantum applications requires the generation of entanglement between two remote qubits with high fidelity and efficiency. In this article, we compare the performance of three common photon-mediated entanglement schemes under realistic noise for solid-state quantum emitters, including optical dephasing and spectral diffusion. We identify the optimal scheme across different noise regimes and calculate the measurement parameters needed to achieve the highest entanglement fidelity at a given rate. Additionally, we explore the effects of temporal and spectral filtering in enhancing entanglement fidelity. Our findings provide practical guidelines for selecting optimal entanglement schemes and outline the measurement strategies for achieving better entanglement fidelity.
Related papers
- Emergent Equilibrium in All-Optical Single Quantum-Trajectory Ising Machines [0.0]
We investigate the dynamics of multi-mode optical systems driven by two-photon processes and subject to non-local losses, incorporating quantum noise at the Gaussian level.
Our findings show that the statistics retrieved from a single Gaussian quantum trajectory exhibits emergent thermal equilibrium governed by an Ising Hamiltonian, encoded in the dissipative coupling between modes.
arXiv Detail & Related papers (2024-12-17T10:31:55Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Entanglement-enhanced dual-comb spectroscopy [0.7340017786387767]
Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications.
We propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance.
Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
arXiv Detail & Related papers (2023-04-04T03:57:53Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - All-optical Tuning of Indistinguishable Single-Photons Generated in
Three-level Quantum Systems [0.2642406403099596]
We introduce a coherent driving scheme of a three-level ladder system utilizing Autler-Townes and ac Stark effects by resonant excitation with two laser fields.
We propose theoretically and demonstrate experimentally the feasibility of this approach towards all-optical spectral tuning of single-photon sources.
arXiv Detail & Related papers (2022-01-02T22:58:05Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.