Large Language Models for Persian $ \leftrightarrow $ English Idiom Translation
- URL: http://arxiv.org/abs/2412.09993v2
- Date: Fri, 21 Feb 2025 21:45:48 GMT
- Title: Large Language Models for Persian $ \leftrightarrow $ English Idiom Translation
- Authors: Sara Rezaeimanesh, Faezeh Hosseini, Yadollah Yaghoobzadeh,
- Abstract summary: Large language models (LLMs) have shown superior capabilities in translating figurative language compared to neural machine translation (NMT) systems.<n>This paper introduces two parallel datasets of sentences containing idiomatic expressions for Persian$rightarrow$English and English$rightarrow$Persian translations.<n>We evaluate various open- and closed-source LLMs, NMT models, and their combinations.<n>Experiments reveal that Claude-3.5-Sonnet delivers outstanding results in both translation directions.
- Score: 5.689194193929357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown superior capabilities in translating figurative language compared to neural machine translation (NMT) systems. However, the impact of different prompting methods and LLM-NMT combinations on idiom translation has yet to be thoroughly investigated. This paper introduces two parallel datasets of sentences containing idiomatic expressions for Persian$\rightarrow$English and English$\rightarrow$Persian translations, with Persian idioms sampled from our PersianIdioms resource, a collection of 2,200 idioms and their meanings, with 700 including usage examples. Using these datasets, we evaluate various open- and closed-source LLMs, NMT models, and their combinations. Translation quality is assessed through idiom translation accuracy and fluency. We also find that automatic evaluation methods like LLM-as-a-judge, BLEU, and BERTScore are effective for comparing different aspects of model performance. Our experiments reveal that Claude-3.5-Sonnet delivers outstanding results in both translation directions. For English$\rightarrow$Persian, combining weaker LLMs with Google Translate improves results, while Persian$\rightarrow$English translations benefit from single prompts for simpler models and complex prompts for advanced ones.
Related papers
- Compositional Translation: A Novel LLM-based Approach for Low-resource Machine Translation [20.704153242284114]
Machine Translation has been shown to benefit from in-context examples when they are semantically similar to the sentence to translate.
We propose a new LLM-based translation paradigm, compositional translation, to replace naive few-shot MT with similarity-based demonstrations.
Our intuition is that this approach should improve translation because these shorter phrases should be intrinsically easier to translate and easier to match with relevant examples.
arXiv Detail & Related papers (2025-03-06T15:37:31Z) - Lost in Literalism: How Supervised Training Shapes Translationese in LLMs [51.04435855143767]
Large language models (LLMs) have achieved remarkable success in machine translation.
However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge.
We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances.
arXiv Detail & Related papers (2025-03-06T12:14:45Z) - Exploring Large Language Models for Translating Romanian Computational Problems into English [0.0]
This study shows that robust large language models (LLMs) can maintain or even enhance their performance in translating less common languages when given well-structured prompts.
We evaluate several translation methods across multiple LLMs, including OpenRoLLM, Llama 3.1 8B, Llama 3.2 3B and GPT-4o.
arXiv Detail & Related papers (2025-01-09T22:17:44Z) - Language Models and Cycle Consistency for Self-Reflective Machine Translation [1.79487674052027]
We generate multiple translation candidates from a source language A to a target language B, and subsequently translate these candidates back to the original language A.
By evaluating the cycle consistency between the original and back-translated sentences using metrics such as token-level precision and accuracy, we implicitly estimate the translation quality in language B.
For each source sentence, we identify the translation candidate with optimal cycle consistency with the original sentence as the final answer.
arXiv Detail & Related papers (2024-11-05T04:01:41Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - On-the-Fly Fusion of Large Language Models and Machine Translation [3.718665608549311]
We propose the on-the-fly ensembling of a machine translation model with an LLM prompted on the same task and input.
We find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and ensembling with an LLM can produce better translations than ensembling two stronger MT models.
arXiv Detail & Related papers (2023-11-14T16:49:33Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
We study the capabilities of large language models to translate "ambiguous sentences"
Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions.
arXiv Detail & Related papers (2023-09-20T22:22:52Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslate is an online machine translation demonstration system for translation between English and an endangered language Cherokee.
It supports both statistical and neural translation models as well as provides quality estimation to inform users of reliability.
arXiv Detail & Related papers (2021-07-30T17:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.