論文の概要: FM2S: Self-Supervised Fluorescence Microscopy Denoising With Single Noisy Image
- arxiv url: http://arxiv.org/abs/2412.10031v1
- Date: Fri, 13 Dec 2024 10:45:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:55.775048
- Title: FM2S: Self-Supervised Fluorescence Microscopy Denoising With Single Noisy Image
- Title(参考訳): FM2S:単一ノイズ像による自己監督蛍光顕微鏡
- Authors: Jizhihui Liu, Qixun Teng, Junjun Jiang,
- Abstract要約: 効率的な自己教師型蛍光顕微鏡(FM2S)を提案する。
データ拡張のための適応的グローバルローカルノイズ付加モジュールを提案する。
次に、2層ニューラルネットワークをトレーニングし、ノイズ付加画像からフィルタ画像へのマッピングを学習する。
- 参考スコア(独自算出の注目度): 35.313887714142744
- License:
- Abstract: Fluorescence microscopy has significantly advanced biological research by visualizing detailed cellular structures and biological processes. However, such image denoising task often faces challenges due to difficulty in precisely modeling the inherent noise and acquiring clean images for training, which constrains most existing methods. In this paper, we propose an efficient self-supervised denoiser Fluorescence Micrograph to Self (FM2S), enabling a high-quality denoised result with a single noisy image. Our method introduces an adaptive global-local Noise Addition module for data augmentation, addressing generalization problems caused by discrepancies between synthetic and real-world noise. We then train a two-layer neural network to learn the mapping from the noise-added image to the filtered image, achieving a balance between noise removal and computational efficiency. Experimental results demonstrate that FM2S excels in various microscope types and noise levels in terms of denoising effects and time consumption, obtaining an average PSNR improvement of around 6 dB over the original noisy image in a few seconds. The code is available at https://github.com/Danielement321/FM2S.
- Abstract(参考訳): 蛍光顕微鏡は、詳細な細胞構造と生物学的過程を可視化することによって、かなり高度な生物学的研究を行っている。
しかし、そのような画像認識タスクは、固有のノイズを正確にモデル化し、既存の方法に制約のあるトレーニング用クリーンな画像を取得するのが難しいため、しばしば課題に直面している。
本稿では,効率的な自己教師型蛍光顕微鏡(FM2S)を提案する。
データ拡張のための適応的グローバルローカルノイズ付加モジュールを導入し、合成ノイズと実世界のノイズの相違による一般化問題に対処する。
次に、2層ニューラルネットワークをトレーニングし、ノイズ付加画像からフィルタ画像へのマッピングを学習し、ノイズ除去と計算効率のバランスをとる。
実験結果から,FM2Sは様々な顕微鏡タイプやノイズレベルにおいて,消音効果と時間消費の点で優れており,元のノイズ像よりも約6dBのPSNR改善が数秒で得られることがわかった。
コードはhttps://github.com/Danielement321/FM2Sで入手できる。
関連論文リスト
- Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
ノイズ2SRは、異なる次元の雑音のペア画像で訓練するために設計されている。
より効率的に自己監督され、単一ノイズの観測からより多くの画像の詳細を復元することができる。
我々は、ノイズ2SRは、他の種類の科学的画像品質を改善する可能性があると想定している。
論文 参考訳(メタデータ) (2022-09-14T04:44:41Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
本稿では,ノイズモデルとデノイザを同時にトレーニングするためのフレームワークを提案する。
ノイズ/クリーンなペア画像データではなく、ノイズの多いイメージのペアに依存します。
トレーニングされたデノイザーは、教師付きおよび弱教師付きベースラインデノイジングアプローチの両方において、大幅に改善される。
論文 参考訳(メタデータ) (2022-06-02T15:31:40Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
我々は,PNGAN(Pixel-level Noise-aware Generative Adrial Network)という新しいフレームワークを提案する。
PNGANは、トレーニング済みのリアルデノイザーを使用して、フェイク画像とリアルノイズ画像をほぼノイズのないソリューション空間にマッピングする。
より優れたノイズフィッティングを実現するため,ジェネレータとしてSimple Multi-versa-scale Network (SMNet) を提案する。
論文 参考訳(メタデータ) (2022-04-06T14:09:02Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
本稿では,スコアベース逆拡散サンプリングに基づく新しい復調法を提案する。
当ネットワークは, 人工膝関節のみを訓練し, 生体内MRIデータにも優れていた。
論文 参考訳(メタデータ) (2022-03-23T10:35:06Z) - De-Noising of Photoacoustic Microscopy Images by Deep Learning [0.9786690381850356]
光音響顕微鏡(PAM)画像は、レーザー強度の最大許容露光、組織内の超音波の減衰、トランスデューサ固有のノイズによってノイズに悩まされる。
そこで本研究では,PAM画像から複雑なノイズを取り除くための深層学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-01-12T05:13:57Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
センサの実際の雑音を直接サンプリングすることで、ノイズを合成する新しい視点を導入する。
それは本質的に、異なるカメラセンサーに対して正確な生画像ノイズを発生させる。
論文 参考訳(メタデータ) (2021-10-10T10:45:24Z) - Noise2Stack: Improving Image Restoration by Learning from Volumetric
Data [0.0]
本稿では,画像スタックへのNoss2Noise法の拡張であるNoss2Stackを紹介する。
磁気共鳴脳スキャンと新たに取得した多面体顕微鏡データを用いて,スタック内の画像近傍からのみ学習することで,ノイズ2ノイズとノイズ2Voidを上回り得ることを示す。
論文 参考訳(メタデータ) (2020-11-10T14:01:47Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
条件付き特徴変調(CFM)モジュールを備えたU-Netバックボーンを備えることにより,新しいフレキシブル画像符号化ネットワーク(CFMNet)を提案する。
CFMNetは、第1層のみのチャネルワイドシフトと比較して、複数のCFM層を配置することでノイズレベル情報をよりよく利用することができる。
我々のCFMNetは、フレキシブルな非盲検のためのノイズレベル情報を利用するのに有効であり、定量的メトリクスと視覚的品質の両方の観点から、既存の深部画像復調法に対して好適に機能する。
論文 参考訳(メタデータ) (2020-06-24T06:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。