FM2S: Self-Supervised Fluorescence Microscopy Denoising With Single Noisy Image
- URL: http://arxiv.org/abs/2412.10031v1
- Date: Fri, 13 Dec 2024 10:45:25 GMT
- Title: FM2S: Self-Supervised Fluorescence Microscopy Denoising With Single Noisy Image
- Authors: Jizhihui Liu, Qixun Teng, Junjun Jiang,
- Abstract summary: We propose an efficient self-supervised denoiser Fluorescence Micrograph to Self (FM2S)
Our method introduces an adaptive global-local Noise Addition module for data augmentation.
We then train a two-layer neural network to learn the mapping from the noise-added image to the filtered image.
- Score: 35.313887714142744
- License:
- Abstract: Fluorescence microscopy has significantly advanced biological research by visualizing detailed cellular structures and biological processes. However, such image denoising task often faces challenges due to difficulty in precisely modeling the inherent noise and acquiring clean images for training, which constrains most existing methods. In this paper, we propose an efficient self-supervised denoiser Fluorescence Micrograph to Self (FM2S), enabling a high-quality denoised result with a single noisy image. Our method introduces an adaptive global-local Noise Addition module for data augmentation, addressing generalization problems caused by discrepancies between synthetic and real-world noise. We then train a two-layer neural network to learn the mapping from the noise-added image to the filtered image, achieving a balance between noise removal and computational efficiency. Experimental results demonstrate that FM2S excels in various microscope types and noise levels in terms of denoising effects and time consumption, obtaining an average PSNR improvement of around 6 dB over the original noisy image in a few seconds. The code is available at https://github.com/Danielement321/FM2S.
Related papers
- Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
Noise2SR is designed for training with paired noisy images of different dimensions.
It is more efficiently self-supervised and able to restore more image details from a single noisy observation.
We envision that Noise2SR has the potential to improve more other kind of scientific imaging quality.
arXiv Detail & Related papers (2022-09-14T04:44:41Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
This paper proposes a framework for training a noise model and a denoiser simultaneously.
It relies on pairs of noisy images rather than noisy/clean paired image data.
The trained denoiser is shown to significantly improve upon both supervised and weakly supervised baseline denoising approaches.
arXiv Detail & Related papers (2022-06-02T15:31:40Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
We propose a new denoising method based on score-based reverse diffusion sampling.
Our network, trained only with coronal knee scans, excels even on out-of-distribution in vivo liver MRI data.
arXiv Detail & Related papers (2022-03-23T10:35:06Z) - De-Noising of Photoacoustic Microscopy Images by Deep Learning [0.9786690381850356]
Photoacoustic microscopy (PAM) imaging suffers from noise due to the maximum permissible exposure of laser intensity, attenuation of ultrasound in the tissue, and the inherent noise of the transducer.
We propose a deep learning-based method to remove complex noise from PAM images without mathematical priors and manual selection of settings for different input images.
arXiv Detail & Related papers (2022-01-12T05:13:57Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Noise2Stack: Improving Image Restoration by Learning from Volumetric
Data [0.0]
We introduce Noise2Stack, an extension of the Noise2Noise method to image stacks.
Our experiments on magnetic resonance brain scans and newly acquired multiplane microscopy data show that learning only from image neighbors in a stack is sufficient to outperform Noise2Noise and Noise2Void.
arXiv Detail & Related papers (2020-11-10T14:01:47Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
We present a novel flexible image enoising network (CFMNet) by equipping an U-Net backbone with conditional feature modulation (CFM) modules.
In comparison to channel-wise shifting only in the first layer, CFMNet can make better use of noise level information by deploying multiple layers of CFM.
Our CFMNet is effective in exploiting noise level information for flexible non-blind denoising, and performs favorably against the existing deep image denoising methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2020-06-24T06:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.