論文の概要: FM2S: Towards Spatially-Correlated Noise Modeling in Zero-Shot Fluorescence Microscopy Image Denoising
- arxiv url: http://arxiv.org/abs/2412.10031v2
- Date: Sun, 30 Mar 2025 10:44:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 15:20:31.299381
- Title: FM2S: Towards Spatially-Correlated Noise Modeling in Zero-Shot Fluorescence Microscopy Image Denoising
- Title(参考訳): FM2S:ゼロショット蛍光顕微鏡画像デノイングにおける空間相関ノイズモデリングを目指して
- Authors: Jizhihui Liu, Qixun Teng, Qing Ma, Junjun Jiang,
- Abstract要約: 蛍光マイクログラフ・トゥ・セルフ (FM2S) は、3つの重要な革新を通じて効率的な蛍光マイクログラフ・トゥ・セルフ (FM2S) を実現するゼロショットデノイザーである。
FM2Sは平均1.4dBPSNRでCVF-SIDを上回り、AP-BSNの0.1%のパラメータを必要とする。
- 参考スコア(独自算出の注目度): 33.383511185170214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluorescence microscopy image (FMI) denoising faces critical challenges due to the compound mixed Poisson-Gaussian noise with strong spatial correlation and the impracticality of acquiring paired noisy/clean data in dynamic biomedical scenarios. While supervised methods trained on synthetic noise (e.g., Gaussian/Poisson) suffer from out-of-distribution generalization issues, existing self-supervised approaches degrade under real FMI noise due to oversimplified noise assumptions and computationally intensive deep architectures. In this paper, we propose Fluorescence Micrograph to Self (FM2S), a zero-shot denoiser that achieves efficient FMI denoising through three key innovations: 1) A noise injection module that ensures training data sufficiency through adaptive Poisson-Gaussian synthesis while preserving spatial correlation and global statistics of FMI noise for robust model generalization; 2) A two-stage progressive learning strategy that first recovers structural priors via pre-denoised targets then refines high-frequency details through noise distribution alignment; 3) An ultra-lightweight network (3.5k parameters) enabling rapid convergence with 270$\times$ faster training and inference than SOTAs. Extensive experiments across FMI datasets demonstrate FM2S's superiority: It outperforms CVF-SID by 1.4dB PSNR on average while requiring 0.1% parameters of AP-BSN. Notably, FM2S maintains stable performance across varying noise levels, proving its practicality for microscopy platforms with diverse sensor characteristics. Code and datasets will be released.
- Abstract(参考訳): 蛍光顕微鏡画像(FMI)は、ポアソン-ガウス混合ノイズと強い空間相関と、動的生医学シナリオにおけるペアノイズ/クリーンデータ取得の非現実性により、重要な課題に直面している。
合成雑音(例えばガウス/ポアソン)で訓練された教師付き手法は、分布外一般化の問題に悩まされるが、既存の自己教師型手法は、過度に単純化されたノイズ仮定と計算集約的な深層構造により、実FMIノイズの下で劣化する。
本稿では, ゼロショットデノイザである蛍光マイクログラフ・トゥ・セルフ(FM2S)を提案する。
1)ロバストモデル一般化のためのFMIノイズの空間的相関と大域統計を保ちながら、適応ポアソン・ガウス合成によるトレーニングデータ充足を保証するノイズ注入モジュール。
2) 先進的な2段階の学習戦略は,まず先進的目標を用いて構造的先行性を回復し,次に雑音分布アライメントにより高周波の詳細を洗練する。
3)SOTAよりも270$\times$高速なトレーニングと推論が可能な超軽量ネットワーク(3.5kパラメータ)。
FM2S は CVF-SID を平均1.4dB PSNR で上回り、AP-BSN の 0.1% のパラメータを必要とする。
特にFM2Sは、様々なノイズレベルにわたって安定した性能を維持しており、様々なセンサ特性を持つ顕微鏡プラットフォームにおいて実用性を示している。
コードとデータセットがリリースされる。
関連論文リスト
- FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
画像強調共同深度推定法は、頑健な知覚に相補的なモダリティを利用するが、一般化可能性の課題に直面している。
自己監督型転送(PST)と周波数デカップリング型フュージョンモジュール(FreDF)を提案する。
PSTは、画像基礎モデルと潜在空間アライメントによるクロスモーダルな知識伝達を確立する。
FreDFは、低周波構造成分から高周波エッジ特性を明示的に分離し、モード比周波数ミスマッチを解消する。
論文 参考訳(メタデータ) (2025-03-25T15:04:53Z) - Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
分散音響センサ(DAS)技術は光ファイバーケーブルを利用して音響信号を検出する。
DASは、ジオフォンよりも低い信号対雑音比(S/N)を示す。
これにより、S/Nの低減は、反転と解釈を含むデータ解析に悪影響を及ぼす。
論文 参考訳(メタデータ) (2025-02-19T03:09:49Z) - Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement [20.763457281944834]
ディフュージョン (Di-Fusion) は、後者の拡散ステップと適応サンプリングプロセスを利用する、完全に自己制御された分極法である。
実データおよびシミュレーションデータを用いた実験により, マイクロ構造モデリング, トラクトグラフィー追跡, その他の下流タスクにおいて, ディフュージョンが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2025-01-23T10:01:33Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
実世界のMRIは、熱ゆらぎによる固有のノイズを既に含んでいる。
そこで本研究では,Nila-DC (NoIse Level Adaptive Data Consistency) を用いた後方サンプリング手法を提案する。
提案手法は最先端のMRI再構成法を超越し,様々なノイズレベルに対して高い堅牢性を有する。
論文 参考訳(メタデータ) (2024-03-08T12:07:18Z) - Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
磁気共鳴画像(MRI)データの再構成は、ディープラーニングによって肯定的な影響を受けている。
重要な課題は、トレーニングとテストデータ間の分散シフトへの一般化を改善することだ。
論文 参考訳(メタデータ) (2024-02-12T12:50:10Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - Physics-guided Noise Neural Proxy for Practical Low-light Raw Image
Denoising [22.11250276261829]
近年,低照度生画像復調訓練の主流は,合成データの利用に移行している。
実世界のセンサのノイズ分布を特徴付けるノイズモデリングは,合成データの有効性と実用性に大きな影響を及ぼす。
そこで本研究では,実データではなく,暗黒フレームからノイズモデルを学習し,データ依存を分解する手法を提案する。
論文 参考訳(メタデータ) (2023-10-13T14:14:43Z) - Amplitude-Varying Perturbation for Balancing Privacy and Utility in
Federated Learning [86.08285033925597]
本稿では,フェデレート学習のプライバシを保護するため,時変雑音振幅を持つ新しいDP摂動機構を提案する。
我々は、FLの過度な摂動ノイズによる早期収束を防止するために、シリーズのオンラインリファインメントを導出した。
新しいDP機構のプライバシ保存FLの収束と精度への寄与は、持続的な雑音振幅を持つ最先端のガウスノイズ機構と比較して相関する。
論文 参考訳(メタデータ) (2023-03-07T22:52:40Z) - Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
ノイズ2SRは、異なる次元の雑音のペア画像で訓練するために設計されている。
より効率的に自己監督され、単一ノイズの観測からより多くの画像の詳細を復元することができる。
我々は、ノイズ2SRは、他の種類の科学的画像品質を改善する可能性があると想定している。
論文 参考訳(メタデータ) (2022-09-14T04:44:41Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
本稿では,ノイズモデルとデノイザを同時にトレーニングするためのフレームワークを提案する。
ノイズ/クリーンなペア画像データではなく、ノイズの多いイメージのペアに依存します。
トレーニングされたデノイザーは、教師付きおよび弱教師付きベースラインデノイジングアプローチの両方において、大幅に改善される。
論文 参考訳(メタデータ) (2022-06-02T15:31:40Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
我々は,PNGAN(Pixel-level Noise-aware Generative Adrial Network)という新しいフレームワークを提案する。
PNGANは、トレーニング済みのリアルデノイザーを使用して、フェイク画像とリアルノイズ画像をほぼノイズのないソリューション空間にマッピングする。
より優れたノイズフィッティングを実現するため,ジェネレータとしてSimple Multi-versa-scale Network (SMNet) を提案する。
論文 参考訳(メタデータ) (2022-04-06T14:09:02Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
本稿では,スコアベース逆拡散サンプリングに基づく新しい復調法を提案する。
当ネットワークは, 人工膝関節のみを訓練し, 生体内MRIデータにも優れていた。
論文 参考訳(メタデータ) (2022-03-23T10:35:06Z) - De-Noising of Photoacoustic Microscopy Images by Deep Learning [0.9786690381850356]
光音響顕微鏡(PAM)画像は、レーザー強度の最大許容露光、組織内の超音波の減衰、トランスデューサ固有のノイズによってノイズに悩まされる。
そこで本研究では,PAM画像から複雑なノイズを取り除くための深層学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-01-12T05:13:57Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
センサの実際の雑音を直接サンプリングすることで、ノイズを合成する新しい視点を導入する。
それは本質的に、異なるカメラセンサーに対して正確な生画像ノイズを発生させる。
論文 参考訳(メタデータ) (2021-10-10T10:45:24Z) - Adaptive Multi-View ICA: Estimation of noise levels for optimal
inference [65.94843987207445]
Adaptive MultiView ICA (AVICA) はノイズの多いICAモデルであり、各ビューは共有された独立したソースと付加的なノイズの線形混合である。
AVICAは、その明示的なMMSE推定器により、他のICA法よりも優れたソース推定値が得られる。
実脳磁図(MEG)データでは,分解がサンプリングノイズに対する感度が低く,ノイズ分散推定が生物学的に妥当であることを示す。
論文 参考訳(メタデータ) (2021-02-22T13:10:12Z) - Noise2Stack: Improving Image Restoration by Learning from Volumetric
Data [0.0]
本稿では,画像スタックへのNoss2Noise法の拡張であるNoss2Stackを紹介する。
磁気共鳴脳スキャンと新たに取得した多面体顕微鏡データを用いて,スタック内の画像近傍からのみ学習することで,ノイズ2ノイズとノイズ2Voidを上回り得ることを示す。
論文 参考訳(メタデータ) (2020-11-10T14:01:47Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
条件付き特徴変調(CFM)モジュールを備えたU-Netバックボーンを備えることにより,新しいフレキシブル画像符号化ネットワーク(CFMNet)を提案する。
CFMNetは、第1層のみのチャネルワイドシフトと比較して、複数のCFM層を配置することでノイズレベル情報をよりよく利用することができる。
我々のCFMNetは、フレキシブルな非盲検のためのノイズレベル情報を利用するのに有効であり、定量的メトリクスと視覚的品質の両方の観点から、既存の深部画像復調法に対して好適に機能する。
論文 参考訳(メタデータ) (2020-06-24T06:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。