ManipGPT: Is Affordance Segmentation by Large Vision Models Enough for Articulated Object Manipulation?
- URL: http://arxiv.org/abs/2412.10050v2
- Date: Wed, 18 Dec 2024 07:08:26 GMT
- Title: ManipGPT: Is Affordance Segmentation by Large Vision Models Enough for Articulated Object Manipulation?
- Authors: Taewhan Kim, Hojin Bae, Zeming Li, Xiaoqi Li, Iaroslav Ponomarenko, Ruihai Wu, Hao Dong,
- Abstract summary: This paper introduces ManipGPT, a framework designed to predict optimal interaction areas for articulated objects.
We created a dataset of 9.9k simulated and real images to bridge the sim-to-real gap.
We significantly improved part-level affordance segmentation, adapting the model's in-context segmentation capabilities to robot manipulation scenarios.
- Score: 17.356760351203715
- License:
- Abstract: Visual actionable affordance has emerged as a transformative approach in robotics, focusing on perceiving interaction areas prior to manipulation. Traditional methods rely on pixel sampling to identify successful interaction samples or processing pointclouds for affordance mapping. However, these approaches are computationally intensive and struggle to adapt to diverse and dynamic environments. This paper introduces ManipGPT, a framework designed to predict optimal interaction areas for articulated objects using a large pre-trained vision transformer (ViT). We created a dataset of 9.9k simulated and real images to bridge the sim-to-real gap and enhance real-world applicability. By fine-tuning the vision transformer on this small dataset, we significantly improved part-level affordance segmentation, adapting the model's in-context segmentation capabilities to robot manipulation scenarios. This enables effective manipulation across simulated and real-world environments by generating part-level affordance masks, paired with an impedance adaptation policy, sufficiently eliminating the need for complex datasets or perception systems.
Related papers
- GAPartManip: A Large-scale Part-centric Dataset for Material-Agnostic Articulated Object Manipulation [9.593020996636932]
We introduce a large-scale part-centric dataset for articulated object manipulation.
We integrate it with several state-of-the-art methods for depth estimation and interaction pose prediction.
Our experiments demonstrate that our dataset significantly improves the performance of depth perception and actionable interaction pose prediction.
arXiv Detail & Related papers (2024-11-27T12:11:23Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
We introduce an interactive robotic manipulation framework called Polaris.
Polaris integrates perception and interaction by utilizing GPT-4 alongside grounded vision models.
We propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline.
arXiv Detail & Related papers (2024-08-15T06:40:38Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - RISeg: Robot Interactive Object Segmentation via Body Frame-Invariant
Features [6.358423536732677]
We introduce a novel approach to correct inaccurate segmentation by using robot interaction and a designed body frame-invariant feature.
We demonstrate the effectiveness of our proposed interactive perception pipeline in accurately segmenting cluttered scenes by achieving an average object segmentation accuracy rate of 80.7%.
arXiv Detail & Related papers (2024-03-04T05:03:24Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
We explore the great potential of a pre-trained vision Transformer (ViT) to bridge the vast distribution gap between two modalities.
We propose a mask modeling strategy that randomly masks a specific modality of some tokens to enforce the interaction between tokens from different modalities interacting proactively.
Experiments demonstrate that our plug-and-play training augmentation techniques can significantly boost state-of-the-art one-stream and two trackersstream to a large extent in terms of both tracking precision and success rate.
arXiv Detail & Related papers (2023-07-09T08:58:47Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation [4.7246285569677315]
We present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptor that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency.
We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
arXiv Detail & Related papers (2023-04-18T02:28:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.