論文の概要: HS-FPN: High Frequency and Spatial Perception FPN for Tiny Object Detection
- arxiv url: http://arxiv.org/abs/2412.10116v2
- Date: Mon, 23 Dec 2024 06:49:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 19:20:50.618911
- Title: HS-FPN: High Frequency and Spatial Perception FPN for Tiny Object Detection
- Title(参考訳): HS-FPN:タイニー物体検出のための高周波・空間知覚FPN
- Authors: Zican Shi, Jing Hu, Jie Ren, Hengkang Ye, Xuyang Yuan, Yan Ouyang, Jia He, Bo Ji, Junyu Guo,
- Abstract要約: 我々は新しい高周波空間知覚特徴ピラミッドネットワーク(HS-FPN)を提案する。
HS-FPNは、小さな物体の特徴を豊かに強調するために、ハイパスフィルタを通じて高周波応答を生成する。
第2に、FPNが欠落している空間依存を捉えるための空間依存認識モジュール(SDP)を開発した。
実験により, HS-FPNに基づく検出器は, 微小物体検出のためのAI-TODデータセット上での最先端モデルに対して, 競争上の優位性を示すことが示された。
- 参考スコア(独自算出の注目度): 10.125113176120175
- License:
- Abstract: The introduction of Feature Pyramid Network (FPN) has significantly improved object detection performance. However, substantial challenges remain in detecting tiny objects, as their features occupy only a very small proportion of the feature maps. Although FPN integrates multi-scale features, it does not directly enhance or enrich the features of tiny objects. Furthermore, FPN lacks spatial perception ability. To address these issues, we propose a novel High Frequency and Spatial Perception Feature Pyramid Network (HS-FPN) with two innovative modules. First, we designed a high frequency perception module (HFP) that generates high frequency responses through high pass filters. These high frequency responses are used as mask weights from both spatial and channel perspectives to enrich and highlight the features of tiny objects in the original feature maps. Second, we developed a spatial dependency perception module (SDP) to capture the spatial dependencies that FPN lacks. Our experiments demonstrate that detectors based on HS-FPN exhibit competitive advantages over state-of-the-art models on the AI-TOD dataset for tiny object detection.
- Abstract(参考訳): FPN(Feature Pyramid Network)の導入により、オブジェクト検出性能が大幅に向上した。
しかし、その特徴が特徴マップのごくわずかしか占めていないため、小さな物体を検出することには大きな課題が残っている。
FPNはマルチスケールの機能を統合するが、小さなオブジェクトの機能を直接強化したり、強化したりしない。
さらに、FPNは空間知覚能力に欠ける。
これらの課題に対処するために,2つの革新的なモジュールを持つ新しい高周波数・空間知覚特徴ピラミッドネットワーク(HS-FPN)を提案する。
まず、高域通過フィルタによる高周波応答を生成する高周波知覚モジュール(HFP)を設計した。
これらの高周波応答は、空間とチャネルの両方の観点からマスクの重みとして使われ、元の特徴写像における小さな物体の特徴を豊かにし、強調する。
第2に、FPNが欠落している空間依存を捉えるための空間依存認識モジュール(SDP)を開発した。
実験により, HS-FPNに基づく検出器は, 微小物体検出のためのAI-TODデータセット上での最先端モデルに対して, 競争上の優位性を示すことが示された。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - A DeNoising FPN With Transformer R-CNN for Tiny Object Detection [25.892598910922004]
そこで本稿では,Trans R-CNN (DNTR) を用いたFPNのデノベーション手法を提案する。
DNTRは、簡単なプラグイン設計、DeNoising FPN (DN-FPN)、効果的なTransformerベースの検出器であるTrans R-CNNで構成されている。
我々は、古いR-CNN検出器を新しいTrans R-CNN検出器に置き換え、自己注意を持つ小さな物体の表現に集中する。
論文 参考訳(メタデータ) (2024-06-09T12:18:15Z) - LR-FPN: Enhancing Remote Sensing Object Detection with Location Refined Feature Pyramid Network [2.028685490378346]
浅い位置情報の抽出を促進するために,新しい位置改良型特徴ピラミッドネットワーク(LR-FPN)を提案する。
2つの大規模なリモートセンシングデータセットの実験により、提案したLR-FPNは最先端のオブジェクト検出手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-04-02T03:36:07Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
リモートセンシングオブジェクト検出のための周波数対応特徴ピラミッドフレームワーク(FFPF)を提案する。
F-ResNetは、周波数領域の畳み込みをバックボーンの各ステージに差し込み、スペクトルコンテキスト情報を知覚するために提案される。
BSFPNは、双方向サンプリング戦略とスキップ接続を用いて、異なるスケールの物体の特徴の関連をより良くモデル化するように設計されている。
論文 参考訳(メタデータ) (2022-09-01T15:50:58Z) - SFPN: Synthetic FPN for Object Detection [6.117917355232904]
本稿では, 軽量CNNバックホンの精度を高めるため, SFPN (Synthetic Fusion Pyramid Network) Arichtectureを提案する。
SFPNアーキテクチャは、大きなバックボーンVGG16、ResNet50、またはAPスコアに基づくMobilenetV2のような軽量のバックボーンよりも優れていた。
論文 参考訳(メタデータ) (2022-03-04T17:19:50Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
水平アンカーから変換された指向性提案を生成するために、任意指向領域提案ネットワーク(AO-RPN)を提案する。
正確なバウンディングボックスを得るために,検出タスクを複数のサブタスクに分離し,マルチヘッドネットワークを提案する。
各ヘッドは、対応するタスクに最適な特徴を学習するために特別に設計されており、ネットワークがオブジェクトを正確に検出することができる。
論文 参考訳(メタデータ) (2020-12-24T06:36:48Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z) - Extended Feature Pyramid Network for Small Object Detection [20.029591259254847]
小型物体検出に特化した高分解能ピラミッドレベルの拡張特徴ピラミッドネットワーク(EFPN)を提案する。
具体的には,特徴の超解法と信頼性のある地域情報を同時に抽出するために,特徴テクスチャ転送(FTT)と呼ばれる新しいモジュールを設計する。
実験では,提案したEFPNは計算とメモリの両方で効率的であり,最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-03-16T04:27:54Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
本稿では,有能な物体検出における進行的融合を改善するために,新しいクロス層特徴ピラミッドネットワークを提案する。
レイヤごとの分散機能は、他のすべてのレイヤからセマンティクスと健全な詳細の両方を同時に所有し、重要な情報の損失を減らします。
論文 参考訳(メタデータ) (2020-02-25T14:06:27Z) - NETNet: Neighbor Erasing and Transferring Network for Better Single Shot
Object Detection [170.30694322460045]
我々は、ピラミッドの特徴を再設定し、スケールアウェアな特徴を探索する新しいNeighbor Erasing and Transferring(NET)メカニズムを提案する。
NETNetと呼ばれるシングルショットネットワークは、スケールアウェアなオブジェクト検出のために構築されている。
論文 参考訳(メタデータ) (2020-01-18T15:21:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。