論文の概要: Retrieval-Augmented Semantic Parsing: Using Large Language Models to Improve Generalization
- arxiv url: http://arxiv.org/abs/2412.10207v1
- Date: Fri, 13 Dec 2024 15:30:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:12.236341
- Title: Retrieval-Augmented Semantic Parsing: Using Large Language Models to Improve Generalization
- Title(参考訳): Retrieval-Augmented Semantic Parsing: 大規模言語モデルを用いて一般化を改善する
- Authors: Xiao Zhang, Qianru Meng, Johan Bos,
- Abstract要約: 本稿では,Retrieval-Augmented Semantic Parsing (RASP)を紹介する。
実験の結果,LLMはセマンティック解析において,従来のエンコーダ・デコーダベースラインよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 6.948555996661213
- License:
- Abstract: Open-domain semantic parsing remains a challenging task, as models often rely on heuristics and struggle to handle unseen concepts. In this paper, we investigate the potential of large language models (LLMs) for this task and introduce Retrieval-Augmented Semantic Parsing (RASP), a simple yet effective approach that integrates external lexical knowledge into the parsing process. Our experiments not only show that LLMs outperform previous encoder-decoder baselines for semantic parsing, but that RASP further enhances their ability to predict unseen concepts, nearly doubling the performance of previous models on out-of-distribution concepts. These findings highlight the promise of leveraging large language models and retrieval mechanisms for robust and open-domain semantic parsing.
- Abstract(参考訳): モデルはしばしばヒューリスティックに頼り、目に見えない概念を扱うのに苦労するため、オープンドメインのセマンティック解析は依然として難しい課題である。
本稿では,この課題に対する大規模言語モデル (LLM) の可能性について検討し,構文解析に外部語彙知識を統合するシンプルかつ効果的な手法であるRetrieval-Augmented Semantic Parsing (RASP) を導入する。
我々の実験は、LLMがセマンティック解析のエンコーダ-デコーダベースラインより優れていることを示すだけでなく、RANは未知の概念を予測する能力をさらに強化し、従来のモデルの性能を分配外概念にほぼ倍増させることを示した。
これらの知見は、ロバストでオープンなセマンティックパーシングのための大規模言語モデルと検索メカニズムを活用するという約束を浮き彫りにした。
関連論文リスト
- Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
テキストレス音声言語モデル(SLM)のセマンティック理解を強化するためのAlign-SLMフレームワークを導入する。
提案手法は、与えられたプロンプトから複数の音声継続を生成し、意味的指標を用いて、直接選好最適化(DPO)のための選好データを生成する。
語彙および構文モデリングのためのZeroSpeech 2021ベンチマーク、意味的コヒーレンスのためのStoryClozeデータセットの音声バージョン、GPT4-oスコアや人間評価などの音声生成指標を用いて、フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-11-04T06:07:53Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints [20.844061807562436]
本稿では,意味的ヒントをプロンプト内に埋め込む新しいプロンプト手法であるSENSEを提案する。
実験の結果、SENSE は様々なタスクで LLM のパフォーマンスを継続的に改善していることがわかった。
論文 参考訳(メタデータ) (2024-09-22T14:35:09Z) - On the Tip of the Tongue: Analyzing Conceptual Representation in Large
Language Models with Reverse-Dictionary Probe [36.65834065044746]
我々は、言語記述に暗示される対象概念の用語を生成するために、文脈内学習を用いてモデルを誘導する。
実験結果から,逆ディファレンシャルタスクによって探索された概念推論能力は,モデルの一般的な推論性能を予測することが示唆された。
論文 参考訳(メタデータ) (2024-02-22T09:45:26Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Token-wise Decomposition of Autoregressive Language Model Hidden States
for Analyzing Model Predictions [9.909170013118775]
本研究は,各初期入力トークンに基づいて,自己回帰言語モデルから最終隠れ状態の線形分解を行う。
次単語確率の変化を重要度尺度として、まず、どの文脈語が言語モデル予測に最も貢献するかを検討する。
論文 参考訳(メタデータ) (2023-05-17T23:55:32Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
本稿では,大規模なプロンプトベース言語モデルであるコーデックスの対角的ロバスト性に関する最初の実証的研究について述べる。
この結果から, 最先端の言語モデル(SOTA)は, 慎重に構築された敵の例に対して脆弱であることが示された。
論文 参考訳(メタデータ) (2023-01-30T13:21:00Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
本稿では,既存の事前学習言語モデルを階層型デコーダネットワークに組み込むことを提案する。
第一原理構造をセマンティックアンカーとすることで、2つの新しい中間管理タスクを提案する。
いくつかのセマンティック解析ベンチマークで集中的な実験を行い、我々のアプローチがベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T07:27:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。