Non-Local to Local Eigenbasis Permutations of Pauli Product Diagonal Operators
- URL: http://arxiv.org/abs/2412.10223v1
- Date: Fri, 13 Dec 2024 15:48:01 GMT
- Title: Non-Local to Local Eigenbasis Permutations of Pauli Product Diagonal Operators
- Authors: Benjamin Commeau, Kevin Player,
- Abstract summary: This paper investigates the feasibility of mapping non-local, sparse, diagonal forms of quantum Hamiltonians to local forms.
We prove that such a mapping is not always possible, definitively refuting the "Quasiparticle Locality Conjecture"
Our hypothesize suggests a sharp transition in this probability, linked to the Hamiltonian's sparsity relative to the Bekenstein-Hawking entropy of neutron stars to black holes transition.
- Score: 0.0
- License:
- Abstract: This paper investigates the feasibility of mapping non-local, sparse, diagonal forms of quantum Hamiltonians to local forms via eigenbasis permutations. We prove that such a mapping is not always possible, definitively refuting the "Quasiparticle Locality Conjecture." This refutation is achieved by establishing a lower bound, denoted $G_m$, on the number of non-zero terms in a localized diagonal form. Remarkably, $G_m$ reaches cosmologically large values, comparable to the entropy of the observable universe for certain localities $m$. While this theoretically guarantees the conjecture's falsity, the immense scale of $G_m$ motivates us to explore the implications for practically sized systems through a probabilistic approach. We construct a set of random, non-local, sparse, diagonal forms and hypothesize their probability of finding a local representation. Our hypothesize suggests a sharp transition in this probability, linked to the Hamiltonian's sparsity relative to the Bekenstein-Hawking entropy of neutron stars to black holes transition. This observation hints at a potential connection between Hamiltonian sparsity, localizability, critical phenomena warranting further investigation into their interplay in both theoretical and astrophysical contexts.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Quasi-quantum states and the quasi-quantum PCP theorem [0.21485350418225244]
We show that solving the $k$-local Hamiltonian over the quasi-quantum states is equivalent to optimizing a distribution of assignment over a classical $k$-local CSP.
Our main result is a PCP theorem for the $k$-local Hamiltonian over the quasi-quantum states in the form of a hardness-of-approximation result.
arXiv Detail & Related papers (2024-10-17T13:43:18Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Nonlocality under Computational Assumptions [51.020610614131186]
A set of correlations is said to be nonlocal if it cannot be reproduced by spacelike-separated parties sharing randomness and performing local operations.
We show that there exist (efficient) local producing measurements that cannot be reproduced through randomness and quantum-time computation.
arXiv Detail & Related papers (2023-03-03T16:53:30Z) - Guidable Local Hamiltonian Problems with Implications to Heuristic Ansätze State Preparation and the Quantum PCP Conjecture [0.0]
We study 'Merlinized' versions of the recently defined Guided Local Hamiltonian problem.
These problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists.
We show that guidable local Hamiltonian problems for both classes of guiding states are $mathsfQCMA$-complete in the inverse-polynomial precision setting.
arXiv Detail & Related papers (2023-02-22T19:00:00Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Estimating gate complexities for the site-by-site preparation of
fermionic vacua [0.0]
We study the ground state overlap as a function of the number of sites for a range of quadratic fermionic Hamiltonians.
For one-dimensional systems, we find that two $N/2$-site ground states also share a large overlap with the $N$-site ground state everywhere except a region near the phase boundary.
arXiv Detail & Related papers (2022-07-04T19:45:14Z) - From locality to irregularity: Introducing local quenches in massive
scalar field theory [68.8204255655161]
We consider the dynamics of excited local states in massive scalar field theory in an arbitrary spacetime dimension.
We identify different regimes of their evolution depending on the values of the field mass and the quench regularization parameter.
We also investigate the local quenches in massive scalar field theory on a cylinder and show that they cause an erratic and chaotic-like evolution of observables.
arXiv Detail & Related papers (2022-05-24T18:00:07Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
We show that the family of quantum triangle distributions of [DOI40103/PhysRevLett.123.140] did not admit triangle-local models in a larger range than the original proof.
We produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.
arXiv Detail & Related papers (2022-03-30T18:00:00Z) - Non-zero momentum requires long-range entanglement [6.018940870331878]
We show that a quantum state in a lattice spin (boson) system must be long-range entangled if it has non-zero lattice momentum.
The statement can also be generalized to fermion systems.
arXiv Detail & Related papers (2021-12-13T19:00:04Z) - Emergent statistical mechanics from properties of disordered random
matrix product states [1.3075880857448061]
We introduce a picture of generic states within the trivial phase of matter with respect to their non-equilibrium and entropic properties.
We prove that disordered random matrix product states equilibrate exponentially well with overwhelming probability under the time evolution of Hamiltonians.
We also prove two results about the entanglement Renyi entropy.
arXiv Detail & Related papers (2021-03-03T19:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.