論文の概要: Interlocking-free Selective Rationalization Through Genetic-based Learning
- arxiv url: http://arxiv.org/abs/2412.10312v1
- Date: Fri, 13 Dec 2024 17:52:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:04:30.569562
- Title: Interlocking-free Selective Rationalization Through Genetic-based Learning
- Title(参考訳): 遺伝的学習によるインターロッキングフリー選択的合理化
- Authors: Federico Ruggeri, Gaetano Signorelli,
- Abstract要約: 我々は、学習オーバーヘッドを必要としない選択的合理化のための最初のインターロックフリーアーキテクチャであるGenSPPを提案する。
人工的および実世界のベンチマーク実験により、我々のモデルはいくつかの最先端の競合より優れていることが示された。
- 参考スコア(独自算出の注目度): 7.504525967508676
- License:
- Abstract: A popular end-to-end architecture for selective rationalization is the select-then-predict pipeline, comprising a generator to extract highlights fed to a predictor. Such a cooperative system suffers from suboptimal equilibrium minima due to the dominance of one of the two modules, a phenomenon known as interlocking. While several contributions aimed at addressing interlocking, they only mitigate its effect, often by introducing feature-based heuristics, sampling, and ad-hoc regularizations. We present GenSPP, the first interlocking-free architecture for selective rationalization that does not require any learning overhead, as the above-mentioned. GenSPP avoids interlocking by performing disjoint training of the generator and predictor via genetic global search. Experiments on a synthetic and a real-world benchmark show that our model outperforms several state-of-the-art competitors.
- Abstract(参考訳): 選択的合理化のための一般的なエンドツーエンドアーキテクチャは、予測子に供給されたハイライトを抽出するジェネレータを含むセレクト・then予測パイプラインである。
このような協調システムは、2つのモジュールのうちの1つが支配的であり、インターロックと呼ばれる現象によって、最適以下の平衡最小値に悩まされる。
インターロックに対処するためのいくつかのコントリビューションは、機能ベースのヒューリスティックス、サンプリング、アドホックな正規化を導入することで、その効果を緩和するだけである。
本稿では,選択的合理化のための最初のインターロックフリーアーキテクチャであるGenSPPについて述べる。
GenSPPは、遺伝子グローバルサーチを介してジェネレータと予測器の解離訓練を行うことで、インターロックを回避する。
人工的および実世界のベンチマーク実験により、我々のモデルはいくつかの最先端の競合より優れていることが示された。
関連論文リスト
- LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
両手インタラクションに先立って生成を学習する新しいフレームワークであるInterHandGenを提案する。
サンプリングにアンチペネティフィケーションと合成フリーガイダンスを組み合わせることで、プラウシブルな生成を可能にする。
本手法は, 妥当性と多様性の観点から, ベースライン生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-03-26T06:35:55Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Unsupervised Selective Rationalization with Noise Injection [7.17737088382948]
教師なし選択的合理化は、2つの共同訓練されたコンポーネント、有理生成器と予測器をチェーンすることで、予測と共に有理性を生成する。
本稿では,生成器と予測器との間にノイズを注入することにより,有理数生成を効果的に抑制する新しい訓練手法を提案する。
新しいベンチマークを含め、さまざまなタスクにおける最先端技術に対する合理的な妥当性とタスク精度の大幅な改善を実現しています。
論文 参考訳(メタデータ) (2023-05-27T17:34:36Z) - Decoupled Rationalization with Asymmetric Learning Rates: A Flexible
Lipschitz Restraint [16.54547887989801]
自己説明的合理化モデルは、一般的に、生成者が入力テキストから最も人間的な知性のある断片を論理として選択する協調ゲームによって構成され、次に選択された合理性に基づいて予測を行う予測器が続く。
そのような協調ゲームは、予測者がまだ十分に訓練されていないジェネレータによって生成される非形式的ピースに過度に適合する退化問題を生じさせ、それからジェネレータを無意味なピースを選択する傾向にある準最適モデルに収束させる。
我々は、自然かつ柔軟にリプシッツ定数を抑制できるDRという、単純で効果的な手法を実証的に提案する。
論文 参考訳(メタデータ) (2023-05-23T02:01:13Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
エージェントの経路のノイズ観測から直接相互作用力のデータに基づく近似を構築することの問題点を考察する。
学習された相互作用カーネルは、長い時間間隔でエージェントの振る舞いを予測するために使用される。
さらに,カーネル評価コストを削減し,マルチエージェントシステムのシミュレーションコストを大幅に削減する。
論文 参考訳(メタデータ) (2022-12-11T20:09:36Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Understanding Interlocking Dynamics of Cooperative Rationalization [90.6863969334526]
選択的合理化(Selective rationalization)は、ニューラルネットワークの出力を予測するのに十分な入力の小さなサブセットを見つけることによって、複雑なニューラルネットワークの予測を説明する。
このような合理化パラダイムでは,モデルインターロックという大きな問題が浮かび上がっている。
A2Rと呼ばれる新しい合理化フレームワークを提案し、アーキテクチャに第3のコンポーネントを導入し、選択とは対照的にソフトアテンションによって駆動される予測器を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:39:18Z) - Explaining a Series of Models by Propagating Local Feature Attributions [9.66840768820136]
複数の機械学習モデルを含むパイプラインは、多くの領域でパフォーマンスが向上するが、理解が難しい。
Shapley値への接続に基づいて、モデルの複雑なパイプラインを通じてローカル機能属性を伝播させるフレームワークを紹介します。
本フレームワークにより,アルツハイマー病および乳癌の組織学的診断における遺伝子発現特徴群に基づく高次結論の導出が可能となった。
論文 参考訳(メタデータ) (2021-04-30T22:20:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。