A dual contrastive framework
- URL: http://arxiv.org/abs/2412.10348v1
- Date: Fri, 13 Dec 2024 18:45:18 GMT
- Title: A dual contrastive framework
- Authors: Yuan Sun, Zhao Zhang, Jorge Ortiz,
- Abstract summary: Region-level visual understanding presents significant challenges for large-scale vision-language models.
We propose AlignCap, a framework designed to enhance region-level understanding through fine-grained alignment of latent spaces.
- Score: 7.358205057611624
- License:
- Abstract: In current multimodal tasks, models typically freeze the encoder and decoder while adapting intermediate layers to task-specific goals, such as region captioning. Region-level visual understanding presents significant challenges for large-scale vision-language models. While limited spatial awareness is a known issue, coarse-grained pretraining, in particular, exacerbates the difficulty of optimizing latent representations for effective encoder-decoder alignment. We propose AlignCap, a framework designed to enhance region-level understanding through fine-grained alignment of latent spaces. Our approach introduces a novel latent feature refinement module that enhances conditioned latent space representations to improve region-level captioning performance. We also propose an innovative alignment strategy, the semantic space alignment module, which boosts the quality of multimodal representations. Additionally, we incorporate contrastive learning in a novel manner within both modules to further enhance region-level captioning performance. To address spatial limitations, we employ a General Object Detection (GOD) method as a data preprocessing pipeline that enhances spatial reasoning at the regional level. Extensive experiments demonstrate that our approach significantly improves region-level captioning performance across various tasks
Related papers
- Scale-wise Bidirectional Alignment Network for Referring Remote Sensing Image Segmentation [12.893224628061516]
The goal of referring remote sensing image segmentation (RRSIS) is to extract specific pixel-level regions within an aerial image via a natural language expression.
We propose an innovative framework called Scale-wise Bidirectional Alignment Network (SBANet) to address these challenges.
Our proposed method achieves superior performance in comparison to previous state-of-the-art methods on the RRSIS-D and RefSegRS datasets.
arXiv Detail & Related papers (2025-01-01T14:24:04Z) - Contrastive Localized Language-Image Pre-Training [60.4967533101887]
Contrastive Language-Image Pre-training (CLIP) has been a celebrated method for training vision encoders to generate image/text representations.
We propose Contrastive Localized Language-Image Pre-training (CLOC) by complementing CLIP with region-text contrastive loss and modules.
CLOC enables high-quality regional embeddings for image region recognition and retrieval tasks.
arXiv Detail & Related papers (2024-10-03T17:56:09Z) - FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background [9.970265640589966]
Existing deep learning approaches leave out the semantic cues that are crucial in semantic segmentation present in complex scenarios.
We propose a feature amplification network (FANet) as a backbone network that incorporates semantic information using a novel feature enhancement module at multi-stages.
Our experimental results demonstrate the state-of-the-art performance compared to existing methods.
arXiv Detail & Related papers (2024-07-12T15:57:52Z) - Coherent and Multi-modality Image Inpainting via Latent Space Optimization [61.99406669027195]
PILOT (intextbfPainting vtextbfIa textbfLatent textbfOptextbfTimization) is an optimization approach grounded on a novel textitsemantic centralization and textitbackground preservation loss.
Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background.
arXiv Detail & Related papers (2024-07-10T19:58:04Z) - DynRefer: Delving into Region-level Multi-modality Tasks via Dynamic Resolution [54.05367433562495]
Region-level multi-modality methods can translate referred image regions to human preferred language descriptions.
Unfortunately, most of existing methods using fixed visual inputs remain lacking the resolution adaptability to find out precise language descriptions.
We propose a dynamic resolution approach, referred to as DynRefer, to pursue high-accuracy region-level referring.
arXiv Detail & Related papers (2024-05-25T05:44:55Z) - RegionGPT: Towards Region Understanding Vision Language Model [88.42271128373191]
RegionGPT (short as RGPT) is a novel framework designed for complex region-level captioning and understanding.
We develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions.
We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks.
arXiv Detail & Related papers (2024-03-04T18:58:08Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
We propose a novel approach to densely ground visual entities from a long caption.
We leverage a large multimodal model to extract semantic nouns, a class-a segmentation model to generate entity-level segmentation, and a multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask.
arXiv Detail & Related papers (2024-02-04T16:06:05Z) - VoLTA: Vision-Language Transformer with Weakly-Supervised Local-Feature
Alignment [52.489874804051304]
VoLTA is a new vision-language pre-training paradigm that only utilizes image-caption data but fine-grained region-level image understanding.
VoLTA pushes multi-modal fusion deep into the uni-modal backbones during pre-training.
Experiments on a wide range of vision- and vision-language downstream tasks demonstrate the effectiveness of VoLTA.
arXiv Detail & Related papers (2022-10-09T01:49:58Z) - DiverGAN: An Efficient and Effective Single-Stage Framework for Diverse
Text-to-Image Generation [7.781425222538382]
DiverGAN is a framework to generate diverse, plausible and semantically consistent images according to a natural-language description.
DiverGAN adopts two novel word-level attention modules, i.e., a channel-attention module (CAM) and a pixel-attention module (PAM)
Conditional Adaptive Instance-Layer Normalization (CAdaILN) is introduced to enable the linguistic cues from the sentence embedding to flexibly manipulate the amount of change in shape and texture.
arXiv Detail & Related papers (2021-11-17T17:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.