Evaluating Robustness of LLMs on Crisis-Related Microblogs across Events, Information Types, and Linguistic Features
- URL: http://arxiv.org/abs/2412.10413v1
- Date: Sun, 08 Dec 2024 10:30:29 GMT
- Title: Evaluating Robustness of LLMs on Crisis-Related Microblogs across Events, Information Types, and Linguistic Features
- Authors: Muhammad Imran, Abdul Wahab Ziaullah, Kai Chen, Ferda Ofli,
- Abstract summary: Microblogging platforms like X provide real-time information to governments during disasters.
Traditionally, supervised machine learning models have been used, but they lack generalizability.
This paper provides a detailed analysis of the performance of six well-known Large Language Models (LLMs) in processing disaster-related social media data.
- Score: 15.844270609527848
- License:
- Abstract: The widespread use of microblogging platforms like X (formerly Twitter) during disasters provides real-time information to governments and response authorities. However, the data from these platforms is often noisy, requiring automated methods to filter relevant information. Traditionally, supervised machine learning models have been used, but they lack generalizability. In contrast, Large Language Models (LLMs) show better capabilities in understanding and processing natural language out of the box. This paper provides a detailed analysis of the performance of six well-known LLMs in processing disaster-related social media data from a large-set of real-world events. Our findings indicate that while LLMs, particularly GPT-4o and GPT-4, offer better generalizability across different disasters and information types, most LLMs face challenges in processing flood-related data, show minimal improvement despite the provision of examples (i.e., shots), and struggle to identify critical information categories like urgent requests and needs. Additionally, we examine how various linguistic features affect model performance and highlight LLMs' vulnerabilities against certain features like typos. Lastly, we provide benchmarking results for all events across both zero- and few-shot settings and observe that proprietary models outperform open-source ones in all tasks.
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
This paper thoroughly analyses large language models' capabilities in detecting vulnerabilities within source code.
We evaluate the performance of six open-source models that are specifically trained for vulnerability detection against six general-purpose LLMs.
arXiv Detail & Related papers (2024-08-29T10:00:57Z) - Investigating Annotator Bias in Large Language Models for Hate Speech Detection [5.589665886212444]
This paper delves into the biases present in Large Language Models (LLMs) when annotating hate speech data.
Specifically targeting highly vulnerable groups within these categories, we analyze annotator biases.
We introduce our custom hate speech detection dataset, HateBiasNet, to conduct this research.
arXiv Detail & Related papers (2024-06-17T00:18:31Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
We propose a unified robustness evaluation framework based on the slot-filling task to evaluate the dialogue understanding capability of large language models.
Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data.
Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios.
arXiv Detail & Related papers (2023-10-10T10:22:05Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - EvEntS ReaLM: Event Reasoning of Entity States via Language Models [24.077262847151232]
Nominally, Large Language models (LLM) have been exposed to procedural knowledge about how objects interact, yet our benchmarking shows they fail to reason about the world.
In particular, our results indicate that our prompting technique is especially useful for unseen attributes (out-of-domain) or when only limited data is available.
arXiv Detail & Related papers (2022-11-10T07:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.