Automatic Image Annotation for Mapped Features Detection
- URL: http://arxiv.org/abs/2412.10438v1
- Date: Wed, 11 Dec 2024 09:06:52 GMT
- Title: Automatic Image Annotation for Mapped Features Detection
- Authors: Maxime Noizet, Philippe Xu, Philippe Bonnifait,
- Abstract summary: Road features are a key enabler for autonomous driving and localization.
Modern deep learning-based perception systems need a significant amount of annotated data.
In this paper, we consider the fusion of three automatic annotation methods in images.
- Score: 6.300346102366891
- License:
- Abstract: Detecting road features is a key enabler for autonomous driving and localization. For instance, a reliable detection of poles which are widespread in road environments can improve localization. Modern deep learning-based perception systems need a significant amount of annotated data. Automatic annotation avoids time-consuming and costly manual annotation. Because automatic methods are prone to errors, managing annotation uncertainty is crucial to ensure a proper learning process. Fusing multiple annotation sources on the same dataset can be an efficient way to reduce the errors. This not only improves the quality of annotations, but also improves the learning of perception models. In this paper, we consider the fusion of three automatic annotation methods in images: feature projection from a high accuracy vector map combined with a lidar, image segmentation and lidar segmentation. Our experimental results demonstrate the significant benefits of multi-modal automatic annotation for pole detection through a comparative evaluation on manually annotated images. Finally, the resulting multi-modal fusion is used to fine-tune an object detection model for pole base detection using unlabeled data, showing overall improvements achieved by enhancing network specialization. The dataset is publicly available.
Related papers
- Feedback-driven object detection and iterative model improvement [2.3700911865675187]
We present the development and evaluation of a platform designed to interactively improve object detection models.
The platform allows uploading and annotating images as well as fine-tuning object detection models.
We show evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation.
arXiv Detail & Related papers (2024-11-29T16:45:25Z) - Map-aided annotation for pole base detection [0.0]
In this paper, a 2D HD map is used to automatically annotate pole-like features in images.
In the absence of height information, the map features are represented as pole bases at the ground level.
We show how an object detector can be trained to detect a pole base.
arXiv Detail & Related papers (2024-03-04T09:23:11Z) - Regressor-Segmenter Mutual Prompt Learning for Crowd Counting [70.49246560246736]
We propose mutual prompt learning (mPrompt) to solve bias and inaccuracy caused by annotation variance.
Experiments show that mPrompt significantly reduces the Mean Average Error (MAE)
arXiv Detail & Related papers (2023-12-04T07:53:59Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - Annotation Error Detection: Analyzing the Past and Present for a More
Coherent Future [63.99570204416711]
We reimplement 18 methods for detecting potential annotation errors and evaluate them on 9 English datasets.
We define a uniform evaluation setup including a new formalization of the annotation error detection task.
We release our datasets and implementations in an easy-to-use and open source software package.
arXiv Detail & Related papers (2022-06-05T22:31:45Z) - Point-Teaching: Weakly Semi-Supervised Object Detection with Point
Annotations [81.02347863372364]
We present Point-Teaching, a weakly semi-supervised object detection framework.
Specifically, we propose a Hungarian-based point matching method to generate pseudo labels for point annotated images.
We propose a simple-yet-effective data augmentation, termed point-guided copy-paste, to reduce the impact of the unmatched points.
arXiv Detail & Related papers (2022-06-01T07:04:38Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
It is challenging to train a robust object detector when annotated data is scarce.
Existing approaches to tackle this problem include semi-supervised learning that interpolates labeled data from unlabeled data.
We introduce an offline data augmentation method for object detection, which semantically interpolates the training data with novel views.
arXiv Detail & Related papers (2021-03-04T06:31:06Z) - Learning to segment from misaligned and partial labels [0.0]
Many non-urban settings lack the ground-truth needed for accurate segmentation.
Open source infrastructure annotations like OpenStreetMaps (OSM) are representative of this issue.
We present a novel and generalizable two-stage framework that enables improved pixel-wise image segmentation given misaligned and missing annotations.
arXiv Detail & Related papers (2020-05-27T06:02:58Z) - Effect of Annotation Errors on Drone Detection with YOLOv3 [14.519138724931446]
In this work, different types of annotation errors for object detection problem are simulated and the performance of a popular state-of-the-art object detector, YOLOv3, is examined.
Some inevitable annotation errors in CVPR-2020 Anti-UAV Challenge dataset is also examined in this manner.
arXiv Detail & Related papers (2020-04-02T15:06:14Z) - Weakly-Supervised Salient Object Detection via Scribble Annotations [54.40518383782725]
We propose a weakly-supervised salient object detection model to learn saliency from scribble labels.
We present a new metric, termed saliency structure measure, to measure the structure alignment of the predicted saliency maps.
Our method not only outperforms existing weakly-supervised/unsupervised methods, but also is on par with several fully-supervised state-of-the-art models.
arXiv Detail & Related papers (2020-03-17T12:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.