論文の概要: CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information
- arxiv url: http://arxiv.org/abs/2412.10489v1
- Date: Fri, 13 Dec 2024 16:27:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:59:35.864825
- Title: CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information
- Title(参考訳): CognitionCapturer:マルチモーダル情報による人間の脳波信号からの視覚刺激のデコード
- Authors: Kaifan Zhang, Lihuo He, Xin Jiang, Wen Lu, Di Wang, Xinbo Gao,
- Abstract要約: 脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
- 参考スコア(独自算出の注目度): 61.1904164368732
- License:
- Abstract: Electroencephalogram (EEG) signals have attracted significant attention from researchers due to their non-invasive nature and high temporal sensitivity in decoding visual stimuli. However, most recent studies have focused solely on the relationship between EEG and image data pairs, neglecting the valuable ``beyond-image-modality" information embedded in EEG signals. This results in the loss of critical multimodal information in EEG. To address this limitation, we propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals. Specifically, CognitionCapturer trains Modality Expert Encoders for each modality to extract cross-modal information from the EEG modality. Then, it introduces a diffusion prior to map the EEG embedding space to the CLIP embedding space, followed by using a pretrained generative model, the proposed framework can reconstruct visual stimuli with high semantic and structural fidelity. Notably, the framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities. Through extensive experiments, we demonstrate that CognitionCapturer outperforms state-of-the-art methods both qualitatively and quantitatively. Code: https://github.com/XiaoZhangYES/CognitionCapturer.
- Abstract(参考訳): 脳波(EEG)信号は、非侵襲的な性質と視覚刺激の復号における時間感度が高いため、研究者から大きな注目を集めている。
しかし、最近の研究は脳波と画像データペアの関係にのみ焦点を当てており、脳波信号に埋め込まれた貴重な「画像のモダリティ」情報を無視している。
これにより、脳波における重要なマルチモーダル情報が失われる。
この制限に対処するため,脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートエンコーダを訓練し、EEGモダリティからモダリティ情報を抽出する。
次に,脳波埋め込み空間をCLIP埋め込み空間にマッピングする前に拡散を導入し,事前学習した生成モデルを用いて視覚刺激を高意味性と構造的忠実度で再構築する。
特に、このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
広範な実験を通して、CognitionCapturerは定性的かつ定量的に最先端の手法より優れていることを示す。
コード:https://github.com/XiaoZhangYES/CognitionCapturer。
関連論文リスト
- Mind's Eye: Image Recognition by EEG via Multimodal Similarity-Keeping Contrastive Learning [2.087148326341881]
本稿では,ゼロショット脳波画像分類のためのMUltimodal similarity-keeper contrastivE学習フレームワークを提案する。
我々は、脳波信号に適した多変量時系列エンコーダを開発し、正規化コントラスト脳波画像事前学習の有効性を評価する。
本手法は,200方向ゼロショット画像分類において,トップ1の精度が19.3%,トップ5の精度が48.8%の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T16:42:23Z) - BrainVis: Exploring the Bridge between Brain and Visual Signals via Image Reconstruction [7.512223286737468]
脳信号からの視覚刺激の分析と再構成は、人間の視覚系の理解を効果的に進める。
しかし、脳波信号は複雑であり、大きなノイズを含む。
これにより、脳波からの視覚刺激再建の既存の作品にかなりの制限が生じる。
我々はこれらの課題に対処するためにBrainVisと呼ばれる新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:49:11Z) - Learning Robust Deep Visual Representations from EEG Brain Recordings [13.768240137063428]
本研究は,脳波に基づく深部表現の頑健な学習を行うための2段階の手法を提案する。
ディープラーニングアーキテクチャを用いて,3つのデータセットにまたがる特徴抽出パイプラインの一般化性を実証する。
本稿では,未知の画像を脳波空間に変換し,近似を用いて再構成する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-25T10:26:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Decoding Natural Images from EEG for Object Recognition [8.411976038504589]
本稿では,脳波信号からの学習画像表現の実現可能性を示すための自己教師型フレームワークを提案する。
我々はトップ1の精度を15.6%、トップ5の精度を42.8%で達成し、200ウェイゼロショットタスクに挑戦する。
これらの発見は、実世界のシナリオにおける神経復号と脳-コンピュータインタフェースの貴重な洞察をもたらす。
論文 参考訳(メタデータ) (2023-08-25T08:05:37Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
脳信号の可視化は、人間の視覚システムとコンピュータビジョンモデルの間の重要なインターフェースとして機能する活発な研究領域として登場した。
我々は、制御可能なマインドビジュアルモデル拡散(CMVDM)と呼ばれる新しいアプローチを提案する。
CMVDMは属性アライメントとアシスタントネットワークを用いてfMRIデータから意味情報とシルエット情報を抽出する。
そして、制御モデルを利用して抽出した情報を画像合成に活用し、セマンティクスやシルエットの観点から視覚刺激によく似た画像を生成する。
論文 参考訳(メタデータ) (2023-05-17T11:36:40Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
脳波データの時系列セグメンテーションのための新しいフレームワークDETRtimeを紹介する。
エンドツーエンドのディープラーニングベースのフレームワークは、コンピュータビジョンの進歩を前面に立たせています。
我々のモデルは脳波睡眠ステージセグメンテーションのタスクにおいてよく一般化される。
論文 参考訳(メタデータ) (2022-06-17T10:17:24Z) - EEG to fMRI Synthesis: Is Deep Learning a candidate? [0.913755431537592]
この研究は、脳波(EEG)ビューデータからfMRIデータを合成するために、Neural Processingから最先端の原理を使用する方法について、初めて包括的な情報を提供する。
オートエンコーダ,ジェネレータネットワーク,ペアワイズラーニングなど,最先端の合成手法の比較を行った。
結果は、fMRI脳画像マッピングに対する脳波の実現可能性を強調し、機械学習における現在の進歩の役割を指摘し、パフォーマンスをさらに向上するために、今後のコントリビューションの関連性を示す。
論文 参考訳(メタデータ) (2020-09-29T16:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。