Topological characterization of special edge modes from the winding of
relative phase
- URL: http://arxiv.org/abs/2306.08100v1
- Date: Tue, 13 Jun 2023 19:43:04 GMT
- Title: Topological characterization of special edge modes from the winding of
relative phase
- Authors: Sudarshan Saha, Tanay Nag, Saptarshi Mandal
- Abstract summary: Inversion or chiral symmetry broken SSH model is an example of a system where one-sided edge state with finite energy appears at one end of the open chain.
We introduce a concept of relative phase between the components of a two-component spinor and define a winding number by the change of this relative phase over the one-dimensional Brillouin zone.
We extend this analysis to a two dimensional case where we characterize the non-trivial phase, hosting gapped one-sided edge mode, by the winding in relative phase only along a certain axis in the Brillouin zone.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The symmetry-constrained topological invariant fails to explain the emergence
of the special edge modes when system does not preserve discrete symmetries.
The inversion or chiral symmetry broken SSH model is an example of one such
system where one-sided edge state with finite energy appears at one end of the
open chain. To investigate whether this special edge mode is of topological
origin or not, we introduce a concept of relative phase between the components
of a two-component spinor and define a winding number by the change of this
relative phase over the one-dimensional Brillouin zone. The relative phase
winds non-trivially (trivially) in accord with the presence (absence) of the
one-sided edge mode inferring the bulk boundary correspondence. We extend this
analysis to a two dimensional case where we characterize the non-trivial phase,
hosting gapped one-sided edge mode, by the winding in relative phase only along
a certain axis in the Brillouin zone. We demonstrate all the above findings
from a generic parametric representation while topology is essentially
determined by whether the underlying lower-dimensional projection includes or
excludes the origin. Our study thus reveals a new paradigm of symmetry broken
topological phases for future studies.
Related papers
- Long-range entanglement from spontaneous non-onsite symmetry breaking [3.3754780158324564]
We show a frustration-free lattice model exhibiting SSB of a non-onsite symmetry.
We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography.
arXiv Detail & Related papers (2024-11-07T18:59:51Z) - Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Boundary deconfined quantum criticality at transitions between symmetry-protected topological chains [0.0]
This work highlights the rich unexplored physics of criticality between nontrivial topological phases.
It provides insights into the burgeoning field of gapless topological phases.
arXiv Detail & Related papers (2022-08-25T17:59:26Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in
Photonic Lattices [14.450949607717437]
We experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry.
Our results demonstrate that inversion symmetry protects the quantized Zak phase, but edge states can disappear in the topological nontrivial phase.
Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.
arXiv Detail & Related papers (2021-09-28T13:35:44Z) - Quotient symmetry protected topological phenomena [0.0]
We show that topological phenomena can be stable over a large part of parameter space even when the bulk is strictly speaking in a trivial phase of matter.
Although the Haldane phase is then adiabatically connected to a product state, we show that characteristic phenomena -- edge modes, entanglement degeneracies and bulk phase transitions -- remain parametrically stable.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Symmetry-protected topological phase transitions and robust chiral order
on a tunable zigzag lattice [8.870994254107801]
We show that the setup in a zigzag optical lattice provides a perfect platform to realize symmetry-protected topological phase transitions.
By using infinite time-evolving block decimation, we obtain the phase diagram in a large parameter regions.
We find another scheme to realize the long-sought vector chiral phase, which is robust from quantum fluctuations.
arXiv Detail & Related papers (2020-11-12T18:20:24Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.