論文の概要: RAGServe: Fast Quality-Aware RAG Systems with Configuration Adaptation
- arxiv url: http://arxiv.org/abs/2412.10543v1
- Date: Fri, 13 Dec 2024 20:39:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:24.810105
- Title: RAGServe: Fast Quality-Aware RAG Systems with Configuration Adaptation
- Title(参考訳): RAGServe: 構成適応付き高速品質対応RAGシステム
- Authors: Siddhant Ray, Rui Pan, Zhuohan Gu, Kuntai Du, Ganesh Ananthanarayanan, Ravi Netravali, Junchen Jiang,
- Abstract要約: RAG (Retrieval Augmented Generation) は、大規模な言語モデルが外部知識でより良い応答を生成することを可能にする。
本稿では、クエリを協調的にスケジュールし、各クエリのキーRAG構成を適応する最初のRAGシステムであるRAGServeについて述べる。
- 参考スコア(独自算出の注目度): 9.50826652108988
- License:
- Abstract: RAG (Retrieval Augmented Generation) allows LLMs (large language models) to generate better responses with external knowledge, but using more external knowledge often improves generation quality at the expense of response delay. Prior work either reduces the response delay (through better scheduling of RAG queries) or strives to maximize quality (which involves tuning the RAG workflow), but they fall short in optimizing the tradeoff between the delay and quality of RAG responses. This paper presents RAGServe, the first RAG system that jointly schedules queries and adapts the key RAG configurations of each query, such as the number of retrieved text chunks and synthesis methods, in order to balance quality optimization and response delay reduction. Using 4 popular RAG-QA datasets, we show that compared with the state-of-the-art RAG optimization schemes, RAGServe reduces the generation latency by $1.64-2.54\times$ without sacrificing generation quality.
- Abstract(参考訳): RAG(Retrieval Augmented Generation)は、LLM(大規模言語モデル)が外部知識でより良い応答を生成することを可能にするが、外部知識を使用することで、応答遅延を犠牲にして生成品質が向上することがしばしばある。
以前の作業では、応答遅延(RAGクエリのスケジューリングの改善による)を削減したり、品質を最大化(RAGワークフローのチューニングを含む)しようとするが、RAGレスポンスの遅延と品質のトレードオフを最適化するのに不足している。
本稿では,検索したテキストチャンク数や合成手法など,クエリを協調的にスケジュールし,各クエリのキーRAG構成に適応する最初のRAGシステムであるRAGServeについて,品質最適化と応答遅延低減のバランスをとるために提案する。
4つの一般的なRAG-QAデータセットを用いて、最先端のRAG最適化スキームと比較して、RAGServeは、生成品質を犠牲にすることなく、生成遅延を1.64-2.54\times$に削減することを示した。
関連論文リスト
- RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
大規模言語モデル(LLM)は目覚ましい性能を達成したが、高い計算コストとレイテンシに直面している。
Retrieval-augmented Generation (RAG) は、外部知識を統合するのに役立つが、不完全な検索は、SLMを誤解させるノイズを引き起こす可能性がある。
我々は、Margin-aware Preference Optimizationを通じて、SLMのための堅牢なRAGフレームワークであるRoseRAGを提案する。
論文 参考訳(メタデータ) (2025-02-16T04:56:53Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - PA-RAG: RAG Alignment via Multi-Perspective Preference Optimization [35.48003039415176]
検索拡張世代(RAG)は、大規模言語モデル(LLM)における時代遅れおよび幻覚的内容の問題を軽減する。
RAGジェネレータは、不適切な応答情報、応答堅牢性、および励振品質に悩まされることが多い。
本稿では,PA-RAG要求を包括的に整合させるため,複数視点優先アライメント(PA-RAG)を提案する。
論文 参考訳(メタデータ) (2024-12-19T04:18:51Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - Toward Optimal Search and Retrieval for RAG [39.69494982983534]
Retrieval-augmented Generation (RAG)は、Large Language Models (LLM)に関連するメモリ関連の課題に対処するための有望な方法である。
ここでは、質問回答(QA)などの共通タスクに対して、レトリバーをRAGパイプラインに最適化する方法を理解することを目的としている。
論文 参考訳(メタデータ) (2024-11-11T22:06:51Z) - RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards [78.74923079748521]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLMs) における幻覚を緩和する効果を証明している。
現在のアプローチでは、命令チューニングを使用してLLMを最適化し、検索した知識を活用する能力を改善している。
本稿では,異なるRAGモジュール間でデータ嗜好を整列させることでRAGシステムを訓練するDDR法を提案する。
論文 参考訳(メタデータ) (2024-10-17T12:53:29Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG(投機的RAG)は、より大規模なジェネラリストLMを利用して、より小さな蒸留専門のLMによって並列に生成された複数のRAGドラフトを効率よく検証するフレームワークである。
提案手法は,より小さな専門家のLMにドラフト作成を委譲することでRAGを加速し,より大きなジェネラリストのLMがドラフトに1回の検証パスを実行する。
PubHealthの従来のRAGシステムと比較して、レイテンシを51%削減しながら、最大12.97%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-07-11T06:50:19Z) - CRAG -- Comprehensive RAG Benchmark [58.15980697921195]
Retrieval-Augmented Generation (RAG) は、Large Language Model (LLM) の知識不足を緩和するための有望なソリューションとして最近登場した。
既存のRAGデータセットは、現実世界の質問回答(QA)タスクの多様性と動的な性質を適切に表現していない。
このギャップを埋めるために、包括的RAGベンチマーク(CRAG)を導入する。
CRAGは、Webと知識グラフ(KG)検索をシミュレートする4,409組の質問応答ペアとモックAPIの実際の質問応答ベンチマークである。
論文 参考訳(メタデータ) (2024-06-07T08:43:07Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
大きな言語モデル (LLM) は、検索によって強化され、堅牢な性能と広範な汎用性を示す。
本稿では,スパースRAGという新しいパラダイムを提案する。
Sparse RAGは、検索したドキュメントを並列にエンコードする。
論文 参考訳(メタデータ) (2024-05-25T11:10:04Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。