Identifying Predictions That Influence the Future: Detecting Performative Concept Drift in Data Streams
- URL: http://arxiv.org/abs/2412.10545v1
- Date: Fri, 13 Dec 2024 20:45:18 GMT
- Title: Identifying Predictions That Influence the Future: Detecting Performative Concept Drift in Data Streams
- Authors: Brandon Gower-Winter, Georg Krempl, Sergey Dragomiretskiy, Tineke Jelsma, Arno Siebes,
- Abstract summary: We introduce a novel type of drift detection task, aimed at identifying potential performative concept drift in data streams.
We propose a first such drift detection approach, called CheckerBoard Performative Drift Detection (CB-PDD)
Results are positive with CB-PDD showing high efficacy, low false detection rates, resilience to intrinsic drift, and an ability to effectively detect performative drift in semi-synthetic datasets.
- Score: 0.0
- License:
- Abstract: Concept Drift has been extensively studied within the context of Stream Learning. However, it is often assumed that the deployed model's predictions play no role in the concept drift the system experiences. Closer inspection reveals that this is not always the case. Automated trading might be prone to self-fulfilling feedback loops. Likewise, malicious entities might adapt to evade detectors in the adversarial setting resulting in a self-negating feedback loop that requires the deployed models to constantly retrain. Such settings where a model may induce concept drift are called performative. In this work, we investigate this phenomenon. Our contributions are as follows: First, we define performative drift within a stream learning setting and distinguish it from other causes of drift. We introduce a novel type of drift detection task, aimed at identifying potential performative concept drift in data streams. We propose a first such performative drift detection approach, called CheckerBoard Performative Drift Detection (CB-PDD). We apply CB-PDD to both synthetic and semi-synthetic datasets that exhibit varying degrees of self-fulfilling feedback loops. Results are positive with CB-PDD showing high efficacy, low false detection rates, resilience to intrinsic drift, comparability to other drift detection techniques, and an ability to effectively detect performative drift in semi-synthetic datasets. Secondly, we highlight the role intrinsic (traditional) drift plays in obfuscating performative drift and discuss the implications of these findings as well as the limitations of CB-PDD.
Related papers
- Transfer Your Perspective: Controllable 3D Generation from Any Viewpoint in a Driving Scene [56.73568220959019]
Collaborative autonomous driving (CAV) seems like a promising direction, but collecting data for development is non-trivial.
We introduce a novel surrogate to the rescue, which is to generate realistic perception from different viewpoints in a driving scene.
We present the very first solution, using a combination of simulated collaborative data and real ego-car data.
arXiv Detail & Related papers (2025-02-10T17:07:53Z) - Methods for Generating Drift in Text Streams [49.3179290313959]
Concept drift is a frequent phenomenon in real-world datasets and corresponds to changes in data distribution over time.
This paper provides four textual drift generation methods to ease the production of datasets with labeled drifts.
Results show that all methods have their performance degraded right after the drifts, and the incremental SVM is the fastest to run and recover the previous performance levels.
arXiv Detail & Related papers (2024-03-18T23:48:33Z) - A comprehensive analysis of concept drift locality in data streams [3.5897534810405403]
Concept drift must be detected for effective model adaptation to evolving data properties.
We present a novel categorization of concept drift based on its locality and scale.
We conduct a comparative assessment of 9 state-of-the-art drift detectors across diverse difficulties.
arXiv Detail & Related papers (2023-11-10T20:57:43Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - Are Concept Drift Detectors Reliable Alarming Systems? -- A Comparative
Study [6.7961908135481615]
Concept drift, also known as concept drift, impacts the performance of machine learning models.
In this study, we assess the reliability of concept drift detectors to identify drift in time.
Our findings aim to help practitioners understand which drift detector should be employed in different situations.
arXiv Detail & Related papers (2022-11-23T16:31:15Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
We propose Meta-ADD, a novel framework that learns to classify concept drift by tracking the changed pattern of error rates.
Specifically, in the training phase, we extract meta-features based on the error rates of various concept drift, after which a meta-detector is developed via prototypical neural network.
In the detection phase, the learned meta-detector is fine-tuned to adapt to the corresponding data stream via stream-based active learning.
arXiv Detail & Related papers (2021-05-04T11:10:39Z) - Adversarial Concept Drift Detection under Poisoning Attacks for Robust
Data Stream Mining [15.49323098362628]
We propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks.
We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector.
We also introduce Relative Loss of Robustness - a novel measure for evaluating the performance of concept drift detectors under poisoning attacks.
arXiv Detail & Related papers (2020-09-20T18:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.