論文の概要: Cardiovascular Disease Detection By Leveraging Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2412.10567v1
- Date: Fri, 13 Dec 2024 21:15:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:15.208127
- Title: Cardiovascular Disease Detection By Leveraging Semi-Supervised Learning
- Title(参考訳): 半監督学習を利用した心血管疾患検出
- Authors: Shaohan Chen, Zheyan Liu, Huili Zheng, Qimin Zhang, Yiru Gong,
- Abstract要約: 心臓血管疾患(CVD)は、世界規模で死の主な原因として存続する。
CVD検出のための従来の教師付き学習アプローチは、大規模ラベル付きデータセットに大きく依存している。
本稿では,ラベル付きサンプルが少ない場合にCVD検出の効率と精度を高めるために,半教師付き学習モデルを用いる。
- 参考スコア(独自算出の注目度): 0.815557531820863
- License:
- Abstract: Cardiovascular disease (CVD) persists as a primary cause of death on a global scale, which requires more effective and timely detection methods. Traditional supervised learning approaches for CVD detection rely heavily on large-labeled datasets, which are often difficult to obtain. This paper employs semi-supervised learning models to boost efficiency and accuracy of CVD detection when there are few labeled samples. By leveraging both labeled and vast amounts of unlabeled data, our approach demonstrates improvements in prediction performance, while reducing the dependency on labeled data. Experimental results in a publicly available dataset show that semi-supervised models outperform traditional supervised learning techniques, providing an intriguing approach for the initial identification of cardiovascular disease within clinical environments.
- Abstract(参考訳): 心臓血管疾患(CVD)は、より効果的でタイムリーな検出方法を必要とする世界規模で死の主要な原因として存続する。
CVD検出のための従来の教師付き学習アプローチは、多くの場合入手が困難である大規模なラベル付きデータセットに大きく依存している。
本稿では,ラベル付きサンプルが少ない場合にCVD検出の効率と精度を高めるために,半教師付き学習モデルを用いる。
ラベル付きデータと大量のラベル付きデータの両方を活用することで,ラベル付きデータへの依存性を低減しつつ,予測性能の向上を実証する。
その結果、半教師付きモデルは従来の教師付き学習技術より優れており、臨床環境における心臓血管疾患の早期同定に興味深いアプローチが得られた。
関連論文リスト
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
心臓血管疾患(CVD)は、現在世界でも主要な死因であり、早期診断と治療の要点を浮き彫りにしている。
機械学習(ML)手法はCVDの早期診断に役立つが、その性能は高品質なデータへのアクセスに依存している。
本稿では、FedCVDという心臓血管疾患検出のための、世界初の実世界のFLベンチマークを示す。
論文 参考訳(メタデータ) (2024-10-28T02:24:01Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - A Compact LSTM-SVM Fusion Model for Long-Duration Cardiovascular
Diseases Detection [0.0]
世界的には、心臓血管疾患(CVD)が主な死因であり、毎年1790万人が死亡している。
重要な臨床目的の1つは、心電図(ECG)データによるCVDの早期検出である。
機械学習とディープラーニングに基づく最近の進歩は、この分野において大きな進歩を遂げている。
論文 参考訳(メタデータ) (2023-11-20T10:57:11Z) - ProtoKD: Learning from Extremely Scarce Data for Parasite Ova
Recognition [5.224806515926022]
ProtoKDは,極端に少ないデータを用いたマルチクラス寄生生物認識の課題に対処するための最初のアプローチの一つである。
我々は、この重要な方向の研究を推進し、提案したProtoKDフレームワークが最先端のパフォーマンスを達成することを検証するために、新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2023-09-18T23:49:04Z) - Semi-Supervised Learning for Multi-Label Cardiovascular Diseases
Prediction:A Multi-Dataset Study [17.84069222975825]
現在の心電図に基づく診断システムは,ディープラーニング技術の急速な発展により,有望な性能を示す。
ラベル不足、複数のCVDの共起、目に見えないデータセットのパフォーマンスの低下は、ディープラーニングベースのモデルの普及を妨げる。
本稿では,複数のCVDを同時に認識するマルチラベル半教師付きモデル(ECGMatch)を提案する。
論文 参考訳(メタデータ) (2023-06-18T07:46:19Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
本稿では,半教師付き学習とマルチスタンス学習を組み合わせた新しい手法を提案する。
本研究は,454被験者の非競合データを活用することにより,物体ごとの震動検出において大きな性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2023-04-29T12:25:10Z) - Self-supervised Model Based on Masked Autoencoders Advance CT Scans
Classification [0.0]
本稿では,自己教師付き学習アルゴリズムMAEに着想を得た。
ImageNetで事前トレーニングされたMAEモデルを使用して、CT Scansデータセット上で転送学習を実行する。
この方法はモデルの一般化性能を改善し、小さなデータセットに過度に適合するリスクを回避する。
論文 参考訳(メタデータ) (2022-10-11T00:52:05Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。