Large collective power enhancement in dissipative charging of a quantum battery
- URL: http://arxiv.org/abs/2412.10586v1
- Date: Fri, 13 Dec 2024 22:02:46 GMT
- Title: Large collective power enhancement in dissipative charging of a quantum battery
- Authors: Sagar Pokhrel, Julio Gea-Banacloche,
- Abstract summary: We consider a model for a quantum battery consisting of a collection of $N$ two-level atoms driven by a classical field and decaying to a common reservoir.
In the extensive regime, where the energy $E$ scales as $N$ and the fluctuations $Delta E/E to 0$, our dissipative charging protocol yields a power proportional to $N2$, a scaling that cannot be achieved in this regime by Hamiltonian protocols.
- Score: 0.0
- License:
- Abstract: We consider a model for a quantum battery consisting of a collection of $N$ two-level atoms driven by a classical field and decaying to a common reservoir. In the extensive regime, where the energy $E$ scales as $N$ and the fluctuations $\Delta E/E \to 0$, our dissipative charging protocol yields a power proportional to $N^2$, a scaling that cannot be achieved in this regime by Hamiltonian protocols. The tradeoff for this enhanced charging power is a relative inefficiency, since a large fraction of the incoming energy is lost through spontaneous emission to the environment. Nevertheless, we find the system can store a large amount of coherence, and also release the stored energy coherently through spontaneous emission, again with a power scaling as $N^2$.
Related papers
- Entanglement and energy transportation in the central-spin quantum battery [13.879580501607691]
Quantum battery exploits the principle of quantum mechanics to transport and store energy.
We study the energy transportation of the central-spin quantum battery, which is composed of $N_b$ spins serving as the battery cells, and surrounded by $N_c$ spins serving as the charger cells.
arXiv Detail & Related papers (2025-02-11T12:32:17Z) - Optimal energy storage in the Tavis-Cummings quantum battery [11.061126692312946]
The Tavis-Cummings (TC) model serves as a natural physical realization of a quantum battery.
In this study, we introduce the invariant subspace method to effectively represent the quantum dynamics of the TC battery.
arXiv Detail & Related papers (2023-12-20T21:36:09Z) - Quantum Dicke battery supercharging in the "bound luminocity" state [0.0]
Dicke model describes an ensemble of two--level systems interacting with a single--mode electromagnetic wave in a resonator cavity.
In order to charge the battery, a coupling between the ensemble of two--level systems and resonator cavity should be turned off at a certain moment of time.
We derive analytically the superlinear law for the quantum battery charging power.
arXiv Detail & Related papers (2023-09-21T19:01:16Z) - Coherence manipulation in asymmetry and thermodynamics [44.99833362998488]
In the classical regime, thermodynamic state transformations are governed by the free energy.
In the quantum regime, coherence and free energy are two independent resources.
We show that allowing along with a source of free energy allows us to amplify any quantum coherence present in the quantum state arbitrarily.
arXiv Detail & Related papers (2023-08-24T14:18:19Z) - The Josephson junction as a quantum engine [44.56439370306859]
Cooper pairs in superconducting electrodes of a Josephson junction (JJ) as an open system, coupled via Andreev scattering to external baths of electrons.
Disequilibrium between the baths generates the direct-current bias applied to the JJ.
We argue that this picture of the JJ as a quantum engine resolves open questions about the Josephson effect as an irreversible process and could open new perspectives in quantum thermodynamics and in the theory of dynamical systems.
arXiv Detail & Related papers (2023-02-09T16:51:39Z) - Collective effects and quantum coherence in dissipative charging of
quantum batteries [0.0]
We show that for low temperatures the collective process can attain a charging power that increases polynomically with the number of batteries.
We also study the dissipative charging process of single battery using a time dependent Hamiltonian that generates coherences in the energy basis.
arXiv Detail & Related papers (2022-05-13T21:17:32Z) - Quantum battery based on superabsorption [0.0]
We propose a quantum battery with a charger system composed of $N$ qubits by utilizing a collective effect called a superabsorption.
Our results open the path to ultra-fast charging of a quantum battery.
arXiv Detail & Related papers (2022-05-08T09:35:59Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Mapping the charge-dyon system into the position-dependent effective
mass background via Pauli equation [77.34726150561087]
This work aims to reproduce a quantum system composed of a charged spin - $1/2$ fermion interacting with a dyon with an opposite electrical charge.
arXiv Detail & Related papers (2020-11-01T14:38:34Z) - Collectively enhanced high-power and high-capacity charging of quantum
batteries via quantum heat engines [0.913755431537592]
We study a charging protocol of a many-body quantum battery (QB) consisting of $N$ two-level systems (TLSs) using quantum heat engines (QHEs)
Our protocol simultaneously achieves theally-perfect charge and almost $N$-order average power enhancement.
Our results suggest that QHEs actually fit for a charger of QBs, efficiently exploiting the collective enhancements.
arXiv Detail & Related papers (2020-08-17T05:07:57Z) - Energy transfer in $N$-component nanosystems enhanced by pulse-driven
vibronic many-body entanglement [41.94295877935867]
We show that pulses of intermediate duration generate highly entangled vibronic states that spread multiple excitons -- and hence energy -- maximally within the system.
The underlying pulse-generated vibronic entanglement increases in strength and robustness as $N$ increases.
arXiv Detail & Related papers (2017-08-10T17:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.